» Articles » PMID: 31346192

Multiphase Progenetic Development Shaped the Brain of Flying Archosaurs

Overview
Journal Sci Rep
Specialty Science
Date 2019 Jul 27
PMID 31346192
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

The growing availability of virtual cranial endocasts of extinct and extant vertebrates has fueled the quest for endocranial characters that discriminate between phylogenetic groups and resolve their neural significances. We used geometric morphometrics to compare a phylogenetically and ecologically comprehensive data set of archosaurian endocasts along the deep evolutionary history of modern birds and found that this lineage experienced progressive elevation of encephalisation through several chapters of increased endocranial doming that we demonstrate to result from progenetic developments. Elevated encephalisation associated with progressive size reduction within Maniraptoriformes was secondarily exapted for flight by stem avialans. Within Mesozoic Avialae, endocranial doming increased in at least some Ornithurae, yet remained relatively modest in early Neornithes. During the Paleogene, volant non-neoavian birds retained ancestral levels of endocast doming where a broad neoavian niche diversification experienced heterochronic brain shape radiation, as did non-volant Palaeognathae. We infer comparable developments underlying the establishment of pterosaurian brain shapes.

Citing Articles

Avian telencephalon and cerebellum volumes can be accurately estimated from digital brain endocasts.

Keirnan A, Cunha F, Citron S, Prideaux G, Iwaniuk A, Weisbecker V Biol Lett. 2025; 21(1):20240596.

PMID: 39837487 PMC: 11750377. DOI: 10.1098/rsbl.2024.0596.


Dinosaur palaeoneurology: an evolving science.

Balanoff A Biol Lett. 2024; 20(12):20240472.

PMID: 39689851 PMC: 11651910. DOI: 10.1098/rsbl.2024.0472.


Brain shapes of large-bodied, flightless ratites (Aves: Palaeognathae) emerge through distinct developmental allometries.

Forcellati M, Green T, Watanabe A R Soc Open Sci. 2024; 11(9):240765.

PMID: 39263457 PMC: 11387061. DOI: 10.1098/rsos.240765.


Endocranial development in non-avian dinosaurs reveals an ontogenetic brain trajectory distinct from extant archosaurs.

King L, Zhao Q, Dufeau D, Kawabe S, Witmer L, Zhou C Nat Commun. 2024; 15(1):7415.

PMID: 39198439 PMC: 11358377. DOI: 10.1038/s41467-024-51627-9.


Avialan-like brain morphology in Sinovenator (Troodontidae, Theropoda).

Yu C, Watanabe A, Qin Z, Logan King J, Witmer L, Ma Q Commun Biol. 2024; 7(1):168.

PMID: 38341492 PMC: 10858883. DOI: 10.1038/s42003-024-05832-3.


References
1.
Maderspacher F . Evolution: Flight of the Ratites. Curr Biol. 2017; 27(3):R110-R113. DOI: 10.1016/j.cub.2016.12.023. View

2.
Lefebvre L, Sol D . Brains, lifestyles and cognition: are there general trends?. Brain Behav Evol. 2008; 72(2):135-44. DOI: 10.1159/000151473. View

3.
Zelenitsky D, Therrien F, Kobayashi Y . Olfactory acuity in theropods: palaeobiological and evolutionary implications. Proc Biol Sci. 2008; 276(1657):667-73. PMC: 2660930. DOI: 10.1098/rspb.2008.1075. View

4.
Witmer L, Ridgely R . New insights into the brain, braincase, and ear region of tyrannosaurs (Dinosauria, Theropoda), with implications for sensory organization and behavior. Anat Rec (Hoboken). 2009; 292(9):1266-96. DOI: 10.1002/ar.20983. View

5.
Lautenschlager S, Hubner T . Ontogenetic trajectories in the ornithischian endocranium. J Evol Biol. 2013; 26(9):2044-50. DOI: 10.1111/jeb.12181. View