» Articles » PMID: 31341162

A Safe and Non-flammable Sodium Metal Battery Based on an Ionic Liquid Electrolyte

Overview
Journal Nat Commun
Specialty Biology
Date 2019 Jul 26
PMID 31341162
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

Rechargeable sodium metal batteries with high energy density could be important to a wide range of energy applications in modern society. The pursuit of higher energy density should ideally come with high safety, a goal difficult for electrolytes based on organic solvents. Here we report a chloroaluminate ionic liquid electrolyte comprised of aluminium chloride/1-methyl-3-ethylimidazolium chloride/sodium chloride ionic liquid spiked with two important additives, ethylaluminum dichloride and 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide. This leads to the first chloroaluminate based ionic liquid electrolyte for rechargeable sodium metal battery. The obtained batteries reached voltages up to ~ 4 V, high Coulombic efficiency up to 99.9%, and high energy and power density of ~ 420 Wh kg and ~ 1766 W kg, respectively. The batteries retained over 90% of the original capacity after 700 cycles, suggesting an effective approach to sodium metal batteries with high energy/high power density, long cycle life and high safety.

Citing Articles

Harnessing organic electrolyte for non-corrosive and wide-temperature Na-Cl battery.

Xu Q, Tang S, Li N, Wang Y, Zhao X, Zhang X Nat Commun. 2025; 16(1):1946.

PMID: 39994293 PMC: 11850892. DOI: 10.1038/s41467-025-57316-5.


Modulating ion-dipole interactions in nonflammable phosphonate-based electrolyte for safe and stable sodium-ion pouch cells.

Yang Z, Dai Y, Xie Z, Li S, Lei Y, Chen J Natl Sci Rev. 2025; 12(3):nwae466.

PMID: 39989912 PMC: 11843547. DOI: 10.1093/nsr/nwae466.


The Interactions between Ionic Liquids and Lithium Polysulfides in Lithium-Sulfur Batteries: A Systematic Density Functional Theory Study.

Li C, Zhou N, Sun R, Tang J, Liu J, He J Materials (Basel). 2024; 17(11).

PMID: 38893953 PMC: 11173497. DOI: 10.3390/ma17112689.


High-efficiency removal of As(iii) from groundwater using siderite as the iron source in the electrocoagulation process.

Yu H, Li J, Qu W, Wang W, Wang J RSC Adv. 2024; 14(27):19206-19218.

PMID: 38882474 PMC: 11178034. DOI: 10.1039/d4ra02716g.


Fluorinated porous frameworks enable robust anode-less sodium metal batteries.

Zhuang R, Zhang X, Qu C, Xu X, Yang J, Ye Q Sci Adv. 2023; 9(39):eadh8060.

PMID: 37774016 PMC: 11090372. DOI: 10.1126/sciadv.adh8060.


References
1.
Cheng X, Zhang R, Zhao C, Zhang Q . Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chem Rev. 2017; 117(15):10403-10473. DOI: 10.1021/acs.chemrev.7b00115. View

2.
Yang Q, Zhang Z, Sun X, Hu Y, Xing H, Dai S . Ionic liquids and derived materials for lithium and sodium batteries. Chem Soc Rev. 2018; 47(6):2020-2064. DOI: 10.1039/c7cs00464h. View

3.
Finegan D, Scheel M, Robinson J, Tjaden B, Hunt I, Mason T . In-operando high-speed tomography of lithium-ion batteries during thermal runaway. Nat Commun. 2015; 6:6924. PMC: 4423228. DOI: 10.1038/ncomms7924. View

4.
Sun H, Xie S, Li Y, Jiang Y, Sun X, Wang B . Large-Area Supercapacitor Textiles with Novel Hierarchical Conducting Structures. Adv Mater. 2016; 28(38):8431-8438. DOI: 10.1002/adma.201602987. View

5.
Liang Y, Li Y, Wang H, Dai H . Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J Am Chem Soc. 2013; 135(6):2013-36. DOI: 10.1021/ja3089923. View