» Articles » PMID: 31338363

Novel Ligands Targeting αβ Integrin: Therapeutic Applications and Perspectives

Overview
Journal Front Chem
Specialty Chemistry
Date 2019 Jul 25
PMID 31338363
Citations 35
Authors
Affiliations
Soon will be listed here.
Abstract

Among the other members of the adhesion molecules' family, αβ integrin, a heterodimeric receptor, plays a crucial role in inflammatory diseases, cancer development, metastasis and stem cell mobilization or retention. In many cases, its function in pathogenesis is not yet completely understood and investigations on ligand binding and related stabilization of active/inactive conformations still represent an important goal. For this reason, starting from the highlight of αβ functions in human pathologies, we report an overview of synthetic αβ integrin ligands under development as potential therapeutic agents. The small molecule library that we have selected represents a collection of lead compounds. These molecules are the object of future refinement in academic and industrial research, in order to achieve a fine tuning of αβ integrin regulation for the development of novel agents against pathologies still eluding an effective solution.

Citing Articles

Longitudinal CNS and systemic T-lymphocyte and monocyte activation before and after antiretroviral therapy beginning in primary HIV infection.

Chan P, Li X, Li F, Emu B, Price R, Spudich S Front Immunol. 2025; 16:1531828.

PMID: 40070827 PMC: 11893981. DOI: 10.3389/fimmu.2025.1531828.


Isolation and Characterization of Antibodies Against Vascular Cell Adhesion Molecule-1 Reveals Putative Role for Ig-like Domains 2 and 3 in Cell-to-Cell Interaction.

Perera B, Wu Y, Pickett J, Panagides N, Barretto F, Fercher C Int J Mol Sci. 2025; 25(24.

PMID: 39769411 PMC: 11678699. DOI: 10.3390/ijms252413650.


Insight into the role of integrins and integrins-targeting biomaterials in bone regeneration.

Tollabi M, Poursalehi Z, Mehrafshar P, Bakhtiari R, Hosseinpour Sarmadi V, Tayebi L Connect Tissue Res. 2024; 65(5):343-363.

PMID: 39297793 PMC: 11541888. DOI: 10.1080/03008207.2024.2396002.


Evaluation of the Antifibrotic Effects of Drugs Commonly Used in Inflammatory Intestinal Diseases on In Vitro Intestinal Cellular Models.

Artone S, Ciafarone A, Augello F, Lombardi F, Cifone M, Palumbo P Int J Mol Sci. 2024; 25(16).

PMID: 39201548 PMC: 11354868. DOI: 10.3390/ijms25168862.


Development of VLA4 and CXCR4 Antagonists for the Mobilization of Hematopoietic Stem and Progenitor Cells.

Ruminski P, Rettig M, Dipersio J Biomolecules. 2024; 14(8).

PMID: 39199390 PMC: 11353233. DOI: 10.3390/biom14081003.


References
1.
Krauss A, Corrales R, Pelegrino F, Tukler-Henriksson J, Pflugfelder S, de Paiva C . Improvement of Outcome Measures of Dry Eye by a Novel Integrin Antagonist in the Murine Desiccating Stress Model. Invest Ophthalmol Vis Sci. 2015; 56(10):5888-95. PMC: 4566400. DOI: 10.1167/iovs.15-17249. View

2.
Huryn D, Konradi A, Ashwell S, Freedman S, Lombardo L, Pleiss M . The identification and optimization of orally efficacious, small molecule VLA-4 antagonists. Curr Top Med Chem. 2004; 4(14):1473-84. DOI: 10.2174/1568026043387467. View

3.
Setoguchi M, Iimura S, Sugimoto Y, Yoneda Y, Chiba J, Watanabe T . Identification of trans-4-[1-[[7-fluoro-2-(1-methyl-3-indolyl)-6-benzoxazolyl]acetyl]-(4S)-fluoro-(2S)-pyrrolidinylmethoxy]cyclohexanecarboxylic acid as a potent, orally active VLA-4 antagonist. Bioorg Med Chem. 2012; 20(3):1201-12. DOI: 10.1016/j.bmc.2011.12.045. View

4.
Ecoiffier T, El Annan J, Rashid S, Schaumberg D, Dana R . Modulation of integrin alpha4beta1 (VLA-4) in dry eye disease. Arch Ophthalmol. 2008; 126(12):1695-9. DOI: 10.1001/archopht.126.12.1695. View

5.
Vanderslice P, Woodside D, Caivano A, Decker E, Munsch C, Sherwood S . Potent in vivo suppression of inflammation by selectively targeting the high affinity conformation of integrin α4β1. Biochem Biophys Res Commun. 2010; 400(4):619-24. DOI: 10.1016/j.bbrc.2010.08.114. View