» Articles » PMID: 31311864

Ultraefficient Thermophotovoltaic Power Conversion by Band-edge Spectral Filtering

Overview
Specialty Science
Date 2019 Jul 18
PMID 31311864
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

Thermophotovoltaic power conversion utilizes thermal radiation from a local heat source to generate electricity in a photovoltaic cell. It was shown in recent years that the addition of a highly reflective rear mirror to a solar cell maximizes the extraction of luminescence. This, in turn, boosts the voltage, enabling the creation of record-breaking solar efficiency. Now we report that the rear mirror can be used to create thermophotovoltaic systems with unprecedented high thermophotovoltaic efficiency. This mirror reflects low-energy infrared photons back into the heat source, recovering their energy. Therefore, the rear mirror serves a dual function; boosting the voltage and reusing infrared thermal photons. This allows the possibility of a practical >50% efficient thermophotovoltaic system. Based on this reflective rear mirror concept, we report a thermophotovoltaic efficiency of 29.1 ± 0.4% at an emitter temperature of 1,207 °C.

Citing Articles

Large Area Near-Field Thermophotovoltaics for Low Temperature Applications.

Selvidge J, France R, Goldsmith J, Solanki P, Steiner M, Tervo E Adv Mater. 2024; 37(5):e2411524.

PMID: 39676469 PMC: 11795708. DOI: 10.1002/adma.202411524.


Effectiveness of multi-junction cells in near-field thermophotovoltaic devices considering additional losses.

Song J, Choi M, Lee B Nanophotonics. 2024; 13(5):813-823.

PMID: 39635100 PMC: 11502035. DOI: 10.1515/nanoph-2023-0572.


Review on the Scientific and Technological Breakthroughs in Thermal Emission Engineering.

Enrique Vazquez-Lozano J, Liberal I ACS Appl Opt Mater. 2024; 2(6):898-927.

PMID: 38962569 PMC: 11217951. DOI: 10.1021/acsaom.4c00030.


Machine Learning Aided Design and Optimization of Thermal Metamaterials.

Zhu C, Bamidele E, Shen X, Zhu G, Li B Chem Rev. 2024; 124(7):4258-4331.

PMID: 38546632 PMC: 11009967. DOI: 10.1021/acs.chemrev.3c00708.


Broadband Superabsorber Operating at 1500 °C Using Dielectric Bilayers.

Gong T, Duncan M, Karahadian M, Leite M, Munday J ACS Appl Opt Mater. 2023; 1(9):1615-1619.

PMID: 37772200 PMC: 10526692. DOI: 10.1021/acsaom.3c00229.


References
1.
Rakic A, Djurisic A, Elazar J, Majewski M . Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt. 2008; 37(22):5271-83. DOI: 10.1364/ao.37.005271. View

2.
Rephaeli E, Fan S . Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit. Opt Express. 2009; 17(17):15145-59. DOI: 10.1364/oe.17.015145. View

3.
Bermel P, Ghebrebrhan M, Chan W, Yeng Y, Araghchini M, Hamam R . Design and global optimization of high-efficiency thermophotovoltaic systems. Opt Express. 2010; 18 Suppl 3:A314-34. DOI: 10.1364/OE.18.00A314. View

4.
Molesky S, Dewalt C, Jacob Z . High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics. Opt Express. 2013; 21 Suppl 1:A96-110. DOI: 10.1364/OE.21.000A96. View

5.
Arpin K, Losego M, Cloud A, Ning H, Mallek J, Sergeant N . Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification. Nat Commun. 2013; 4:2630. DOI: 10.1038/ncomms3630. View