Strength Enhancement and Slip Behaviour of High-entropy Carbide Grains During Micro-compression
Affiliations
Bulk polycrystalline high-entropy carbides are a newly developed group of materials that increase the limited compositional space of ultra-high temperature ceramics, which can withstand extreme environments exceeding 2000 °C in oxidizing atmospheres. Since the deformability of grains plays an important role in macromechanical performance, in this work we studied the strength and slip behaviour of grains of a spark-plasma sintered (Hf-Ta-Zr-Nb)C high-entropy carbide in a specific orientation during micropillar compression. For comparison, identical measurements were carried out on the monocarbides HfC and TaC. It was revealed that (Hf-Ta-Zr-Nb)C had a significantly enhanced yield and failure strength compared to the corresponding base monocarbides, while maintaining a similar ductility to the least brittle monocarbide (TaC) during the operation of [Formula: see text] slip systems. Additionally, it was concluded that the crystal orientation and stress conditions determine the operation of slip systems in mono- and high-entropy carbides at room temperature.
Insights into the anomalous hardness of the tantalum carbides from dislocation mobility.
Watkins B, Haas Blacksher C, Stubbers A, Thompson G, Weinberger C Nat Commun. 2024; 15(1):10585.
PMID: 39632857 PMC: 11618474. DOI: 10.1038/s41467-024-54893-9.
Superhard bulk high-entropy carbides with enhanced toughness via metastable in-situ particles.
Hu J, Yang Q, Zhu S, Zhang Y, Yan D, Gan K Nat Commun. 2023; 14(1):5717.
PMID: 37714826 PMC: 10504279. DOI: 10.1038/s41467-023-41481-6.