» Articles » PMID: 31291259

Chloroplast and Mitochondrial Genetic Variation of Larches at the Siberian Tundra-taiga Ecotone Revealed by De Novo Assembly

Overview
Journal PLoS One
Date 2019 Jul 11
PMID 31291259
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Larix populations at the tundra-taiga ecotone in northern Siberia are highly under-represented in population genetic studies, possibly due to the remoteness of these regions that can only be accessed at extraordinary expense. The genetic signatures of populations in these boundary regions are therefore largely unknown. We aim to generate organelle reference genomes for the detection of single nucleotide polymorphisms (SNPs) that can be used for paleogenetic studies. We present 19 complete chloroplast genomes and mitochondrial genomic sequences of larches from the southern lowlands of the Taymyr Peninsula (northernmost range of Larix gmelinii (Rupr.) Kuzen.), the lower Omoloy River, and the lower Kolyma River (both in the range of Larix cajanderi Mayr). The genomic data reveal 84 chloroplast SNPs and 213 putatively mitochondrial SNPs. Parsimony-based chloroplast haplotype networks show no spatial structure of individuals from different geographic origins, while the mitochondrial haplotype network shows at least a slight spatial structure with haplotypes from the Omoloy and Kolyma populations being more closely related to each other than to most of the haplotypes from the Taymyr populations. Whole genome alignments with publicly available complete chloroplast genomes of different Larix species show that among official plant barcodes only the rcbL gene contains sufficient polymorphisms, but has to be sequenced completely to distinguish the different provenances. We provide 8 novel mitochondrial SNPs that are putatively diagnostic for the separation of L. gmelinii and L. cajanderi, while 4 chloroplast SNPs have the potential to distinguish the L. gmelinii/L. cajanderi group from other Larix species. Our organelle references can be used for a targeted primer and probe design allowing the generation of short amplicons. This is particularly important with regard to future investigations of, for example, the biogeographic history of Larix by screening ancient sedimentary DNA of Larix.

Citing Articles

Are the Organellar Genomes Useful for Fine Scale Population Structure Analysis of Endangered Plants?-A Case Study of (L.) Mill.

Szandar K, Jakub S, Paukszto L, Krawczyk K, Szczecinska M Genes (Basel). 2023; 14(1).

PMID: 36672808 PMC: 9859050. DOI: 10.3390/genes14010067.


Larix species range dynamics in Siberia since the Last Glacial captured from sedimentary ancient DNA.

Schulte L, Meucci S, Stoof-Leichsenring K, Heitkam T, Schmidt N, von Hippel B Commun Biol. 2022; 5(1):570.

PMID: 35681049 PMC: 9184489. DOI: 10.1038/s42003-022-03455-0.


Breaking the limits - multichromosomal structure of an early eudicot Pulsatilla patens mitogenome reveals extensive RNA-editing, longest repeats and chloroplast derived regions among sequenced land plant mitogenomes.

Szandar K, Krawczyk K, Myszczynski K, Slipiko M, Sawicki J, Szczecinska M BMC Plant Biol. 2022; 22(1):109.

PMID: 35264098 PMC: 8905907. DOI: 10.1186/s12870-022-03492-1.


Comparative Repeat Profiling of Two Closely Related Conifers ( and ) Reveals High Genome Similarity With Only Few Fast-Evolving Satellite DNAs.

Heitkam T, Schulte L, Weber B, Liedtke S, Breitenbach S, Kogler A Front Genet. 2021; 12:683668.

PMID: 34322154 PMC: 8312256. DOI: 10.3389/fgene.2021.683668.


Holocene chloroplast genetic variation of shrubs (, , sp.) at the siberian tundra-taiga ecotone inferred from modern chloroplast genome assembly and sedimentary ancient DNA analyses.

Meucci S, Schulte L, Zimmermann H, Stoof-Leichsenring K, Epp L, Eidesen P Ecol Evol. 2021; 11(5):2173-2193.

PMID: 33717447 PMC: 7920767. DOI: 10.1002/ece3.7183.


References
1.
Nikolenko S, Korobeynikov A, Alekseyev M . BayesHammer: Bayesian clustering for error correction in single-cell sequencing. BMC Genomics. 2013; 14 Suppl 1:S7. PMC: 3549815. DOI: 10.1186/1471-2164-14-S1-S7. View

2.
Li H, Durbin R . Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009; 25(14):1754-60. PMC: 2705234. DOI: 10.1093/bioinformatics/btp324. View

3.
Hofreiter M, Serre D, Poinar H, Kuch M, Paabo S . Ancient DNA. Nat Rev Genet. 2001; 2(5):353-9. DOI: 10.1038/35072071. View

4.
Parducci L, Bennett K . The real significance of ancient DNA. Am J Bot. 2017; 104(6):800-802. DOI: 10.3732/ajb.1700073. View

5.
Stoof-Leichsenring K, Epp L, Trauth M, Tiedemann R . Hidden diversity in diatoms of Kenyan Lake Naivasha: a genetic approach detects temporal variation. Mol Ecol. 2012; 21(8):1918-30. DOI: 10.1111/j.1365-294X.2011.05412.x. View