Combined Density Functional and Algebraic-Diagrammatic Construction Approach for Accurate Excitation Energies and Transition Moments
Overview
Chemistry
Authors
Affiliations
A composite of time-dependent density functional theory (TDDFT) and the second-order algebraic-diagrammatic construction [ADC(2)] approach is presented for efficient calculation of spectral properties of molecules. Our method can be regarded as a new excited-state double-hybrid (DH) approach or a dressed TDDFT scheme, but it can also be interpreted as an empirically tuned ADC(2) model. Several combinations of exchange-correlation functionals and spin-scaling schemes are explored. Our best-performing method includes the Perdew, Burke, and Ernzerhof exchange and Perdew's 1986 correlation functional and employs the scaled-opposite-spin approximation for the higher-order terms. The computation time of the new method scales as the fourth power of the system size, and an efficient cost-reduction approach is also presented, which further speeds up the calculations. Our benchmark calculations show that the proposed model outperforms not only the existing DH approaches and ADC(2) variants but also the considerably more expensive coupled-cluster methods.
Overview of Developments in the MRCC Program System.
Mester D, Nagy P, Csoka J, Gyevi-Nagy L, Szabo P, Horvath R J Phys Chem A. 2025; 129(8):2086-2107.
PMID: 39957179 PMC: 11874011. DOI: 10.1021/acs.jpca.4c07807.
Artificial design of organic emitters a genetic algorithm enhanced by a deep neural network.
Nigam A, Pollice R, Friederich P, Aspuru-Guzik A Chem Sci. 2024; 15(7):2618-2639.
PMID: 38362419 PMC: 10866360. DOI: 10.1039/d3sc05306g.
Mester D, Kallay M J Chem Theory Comput. 2023; 19(13):3982-3995.
PMID: 37326360 PMC: 10339736. DOI: 10.1021/acs.jctc.3c00363.
Reduced-Cost Second-Order Algebraic-Diagrammatic Construction Method for Core Excitations.
Mester D, Kallay M J Chem Theory Comput. 2023; 19(10):2850-2862.
PMID: 37132379 PMC: 10210249. DOI: 10.1021/acs.jctc.3c00101.
Double-Hybrid Density Functional Theory for Core Excitations: Theory and Benchmark Calculations.
Mester D, Kallay M J Chem Theory Comput. 2023; 19(4):1310-1321.
PMID: 36721871 PMC: 9979613. DOI: 10.1021/acs.jctc.2c01222.