» Articles » PMID: 31259547

PerMM: A Web Tool and Database for Analysis of Passive Membrane Permeability and Translocation Pathways of Bioactive Molecules

Overview
Date 2019 Jul 2
PMID 31259547
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

The PerMM web server and database were developed for quantitative analysis and visualization of passive translocation of bioactive molecules across lipid membranes. The server is the first physics-based web tool that calculates membrane binding energies and permeability coefficients of diverse molecules through artificial and natural membranes (phospholipid bilayers, PAMPA-DS, blood-brain barrier, and Caco-2/MDCK cell membranes). It also visualizes the transmembrane translocation pathway as a sequence of translational and rotational positions of a permeant as it moves across the lipid bilayer, along with the corresponding changes in solvation energy. The server can be applied for prediction of permeability coefficients of compounds with diverse chemical scaffolds to facilitate selection and optimization of potential drug leads. The complementary PerMM database allows comparison of computationally and experimentally determined permeability coefficients for more than 500 compounds in different membrane systems. The website and database are freely accessible at https://permm.phar.umich.edu/ .

Citing Articles

LC-MS profiling and cytotoxic activity of Angiopteris helferiana against HepG2 cell line: Molecular insight to investigate anticancer agent.

Pandey B, Thapa S, Biradar M, Singh B, Ghale J, Kharel P PLoS One. 2024; 19(12):e0309797.

PMID: 39739862 PMC: 11687663. DOI: 10.1371/journal.pone.0309797.


Exploring putative enteric methanogenesis inhibitors using molecular simulations and a graph neural network.

Aryee R, Mohammed N, Dey S, Arunraj B, Nadendla S, Sajeevan K bioRxiv. 2024; .

PMID: 39345548 PMC: 11429904. DOI: 10.1101/2024.09.16.613350.


Improving the Accuracy of Permeability Data to Gain Predictive Power: Assessing Sources of Variability in Assays Using Cell Monolayers.

Pires C, Moreno M Membranes (Basel). 2024; 14(7).

PMID: 39057665 PMC: 11278619. DOI: 10.3390/membranes14070157.


In Silico and In Vitro Studies on an Asymmetrical Porphyrin Derivative with Therapeutic Potential in Skin Disorders.

Burloiu A, Mihai D, Manda G, Lupuliasa D, Neagoe I, Socoteanu R Pharmaceuticals (Basel). 2024; 17(6).

PMID: 38931355 PMC: 11206637. DOI: 10.3390/ph17060688.


Transient Receptor Potential Ankyrin 1 (TRPA1) Modulation by 4-Hydroxynonenal (4-HNE) in Pancreatic Adenocarcinoma Cell Lines: Putative Roles for Therapies.

Piciu F, Domocos D, Chiritoiu G, Chiritoiu-Butnaru M, Mernea M, Popescu C Pharmaceuticals (Basel). 2024; 17(3).

PMID: 38543130 PMC: 10975152. DOI: 10.3390/ph17030344.


References
1.
Leung S, Mijalkovic J, Borrelli K, Jacobson M . Testing physical models of passive membrane permeation. J Chem Inf Model. 2012; 52(6):1621-36. PMC: 3383340. DOI: 10.1021/ci200583t. View

2.
Parisio G, Stocchero M, Ferrarini A . Passive Membrane Permeability: Beyond the Standard Solubility-Diffusion Model. J Chem Theory Comput. 2015; 9(12):5236-46. DOI: 10.1021/ct400690t. View

3.
Lomize A, Pogozheva I, Mosberg H . Anisotropic solvent model of the lipid bilayer. 2. Energetics of insertion of small molecules, peptides, and proteins in membranes. J Chem Inf Model. 2011; 51(4):930-46. PMC: 3091260. DOI: 10.1021/ci200020k. View

4.
Pogozheva I, Tristram-Nagle S, Mosberg H, Lomize A . Structural adaptations of proteins to different biological membranes. Biochim Biophys Acta. 2013; 1828(11):2592-608. PMC: 3787962. DOI: 10.1016/j.bbamem.2013.06.023. View

5.
Palaiokostas M, Ding W, Shahane G, Orsi M . Effects of lipid composition on membrane permeation. Soft Matter. 2018; 14(42):8496-8508. DOI: 10.1039/c8sm01262h. View