» Articles » PMID: 31256988

Catalytically Active Cas9 Mediates Transcriptional Interference to Facilitate Bacterial Virulence

Overview
Journal Mol Cell
Publisher Cell Press
Specialty Cell Biology
Date 2019 Jul 2
PMID 31256988
Citations 35
Authors
Affiliations
Soon will be listed here.
Abstract

In addition to defense against foreign DNA, the CRISPR-Cas9 system of Francisella novicida represses expression of an endogenous immunostimulatory lipoprotein. We investigated the specificity and molecular mechanism of this regulation, demonstrating that Cas9 controls a highly specific regulon of four genes that must be repressed for bacterial virulence. Regulation occurs through a protospacer adjacent motif (PAM)-dependent interaction of Cas9 with its endogenous DNA targets, dependent on a non-canonical small RNA (scaRNA) and tracrRNA. The limited complementarity between scaRNA and the endogenous DNA targets precludes cleavage, highlighting the evolution of scaRNA to repress transcription without lethally targeting the chromosome. We show that scaRNA can be reprogrammed to repress other genes, and with engineered, extended complementarity to an exogenous target, the repurposed scaRNA:tracrRNA-FnoCas9 machinery can also direct DNA cleavage. Natural Cas9 transcriptional interference likely represents a broad paradigm of regulatory functionality, which is potentially critical to the physiology of numerous Cas9-encoding pathogenic and commensal organisms.

Citing Articles

CRISPR-repressed toxin-antitoxin provides herd immunity against anti-CRISPR elements.

Shu X, Wang R, Li Z, Xue Q, Wang J, Liu J Nat Chem Biol. 2024; 21(3):337-347.

PMID: 39075253 DOI: 10.1038/s41589-024-01693-3.


A dynamic subpopulation of CRISPR-Cas overexpressers allows Streptococcus pyogenes to rapidly respond to phage.

Stoltzfus M, Workman R, Keith N, Modell J Nat Microbiol. 2024; 9(9):2410-2421.

PMID: 38997519 DOI: 10.1038/s41564-024-01748-0.


TnpB homologues exapted from transposons are RNA-guided transcription factors.

Wiegand T, Hoffmann F, Walker M, Tang S, Richard E, Le H Nature. 2024; 631(8020):439-448.

PMID: 38926585 PMC: 11702177. DOI: 10.1038/s41586-024-07598-4.


Emergence of RNA-guided transcription factors via domestication of transposon-encoded TnpB nucleases.

Wiegand T, Hoffmann F, Walker M, Tang S, Richard E, Le H bioRxiv. 2023; .

PMID: 38076855 PMC: 10705468. DOI: 10.1101/2023.11.30.569447.


Interrogating two extensively self-targeting Type I CRISPR-Cas systems in Xanthomonas albilineans reveals distinct anti-CRISPR proteins that block DNA degradation.

Wimmer F, Englert F, Wandera K, Alkhnbashi O, Collins S, Backofen R Nucleic Acids Res. 2023; 52(2):769-783.

PMID: 38015466 PMC: 10810201. DOI: 10.1093/nar/gkad1097.


References
1.
Anders S, Pyl P, Huber W . HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2014; 31(2):166-9. PMC: 4287950. DOI: 10.1093/bioinformatics/btu638. View

2.
Dugar G, Leenay R, Eisenbart S, Bischler T, Aul B, Beisel C . CRISPR RNA-Dependent Binding and Cleavage of Endogenous RNAs by the Campylobacter jejuni Cas9. Mol Cell. 2018; 69(5):893-905.e7. PMC: 5859949. DOI: 10.1016/j.molcel.2018.01.032. View

3.
Strutt S, Torrez R, Kaya E, Negrete O, Doudna J . RNA-dependent RNA targeting by CRISPR-Cas9. Elife. 2018; 7. PMC: 5796797. DOI: 10.7554/eLife.32724. View

4.
OConnell M, Oakes B, Sternberg S, East-Seletsky A, Kaplan M, Doudna J . Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature. 2014; 516(7530):263-6. PMC: 4268322. DOI: 10.1038/nature13769. View

5.
Pourcel C, Salvignol G, Vergnaud G . CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology (Reading). 2005; 151(Pt 3):653-663. DOI: 10.1099/mic.0.27437-0. View