Khojastehnezhad M, Youseflee P, Moradi A, Ebrahimzadeh M, Jirofti N
Arch Bone Jt Surg. 2025; 13(1):17-22.
PMID: 39886341
PMC: 11776378.
DOI: 10.22038/ABJS.2024.84231.3829.
Andriollo L, Picchi A, Iademarco G, Fidanza A, Perticarini L, Rossi S
J Pers Med. 2025; 15(1).
PMID: 39852213
PMC: 11767033.
DOI: 10.3390/jpm15010021.
Salimy M, Buddhiraju A, Chen T, Mittal A, Xiao P, Kwon Y
Arch Orthop Trauma Surg. 2025; 145(1):131.
PMID: 39820648
DOI: 10.1007/s00402-025-05757-4.
Zhang G, Liu Z, Wang D, Tian Z, Yao Q
Heliyon. 2024; 10(22):e39664.
PMID: 39624323
PMC: 11609650.
DOI: 10.1016/j.heliyon.2024.e39664.
Chen T, RezazadehSaatlou M, Buddhiraju A, Seo H, Shimizu M, Kwon Y
Arch Orthop Trauma Surg. 2024; 144(9):4411-4420.
PMID: 39294531
DOI: 10.1007/s00402-024-05542-9.
A Scientometric Worldview of Artificial Intelligence in Musculoskeletal Diseases Since the 21st Century.
Cao S, Wei Y, Yue Y, Wang D, Xiong A, Zeng H
J Multidiscip Healthc. 2024; 17:3193-3211.
PMID: 39006873
PMC: 11246091.
DOI: 10.2147/JMDH.S477219.
Predicting factors for extremity fracture among border-fall patients using machine learning computing.
Palacio C, Hovorka M, Acosta M, Bautista R, Chen C, Hovorka J
Heliyon. 2024; 10(11):e32185.
PMID: 38961975
PMC: 11219316.
DOI: 10.1016/j.heliyon.2024.e32185.
Using Google web search to analyze and evaluate the application of ChatGPT in femoroacetabular impingement syndrome.
Chen Y, Zhang S, Tang N, George D, Huang T, Tang J
Front Public Health. 2024; 12:1412063.
PMID: 38883198
PMC: 11176516.
DOI: 10.3389/fpubh.2024.1412063.
Evaluating the accuracy of a new robotically assisted system in cadaveric total knee arthroplasty procedures.
Yi J, Gao Z, Huang Y, Liu Y, Zhang Y, Chai W
J Orthop Surg Res. 2024; 19(1):354.
PMID: 38879524
PMC: 11179344.
DOI: 10.1186/s13018-024-04788-8.
The influence of AI on the economic growth of different regions in China.
Lin S, Wang M, Jing C, Zhang S, Chen J, Liu R
Sci Rep. 2024; 14(1):9169.
PMID: 38649432
PMC: 11035668.
DOI: 10.1038/s41598-024-59968-7.
Generalizability of machine learning models predicting 30-day unplanned readmission after primary total knee arthroplasty using a nationally representative database.
Buddhiraju A, Shimizu M, Seo H, Chen T, RezazadehSaatlou M, Huang Z
Med Biol Eng Comput. 2024; 62(8):2333-2341.
PMID: 38558351
DOI: 10.1007/s11517-024-03075-2.
Development and Validation of an Artificial Intelligence Preoperative Planning and Patient-Specific Instrumentation System for Total Knee Arthroplasty.
Li S, Liu X, Chen X, Xu H, Zhang Y, Qian W
Bioengineering (Basel). 2023; 10(12).
PMID: 38136008
PMC: 10740483.
DOI: 10.3390/bioengineering10121417.
Artificial Intelligence Image Recognition System for Preventing Wrong-Site Upper Limb Surgery.
Wu Y, Chang C, Huang Y, Chen S, Chen C, Kao H
Diagnostics (Basel). 2023; 13(24).
PMID: 38132251
PMC: 10743305.
DOI: 10.3390/diagnostics13243667.
Machine-learning vs. logistic regression for preoperative prediction of medical morbidity after fast-track hip and knee arthroplasty-a comparative study.
Michelsen C, Jorgensen C, Heltberg M, Jensen M, Lucchetti A, Petersen P
BMC Anesthesiol. 2023; 23(1):391.
PMID: 38030979
PMC: 10685559.
DOI: 10.1186/s12871-023-02354-z.
Comparative study on risk prediction model of type 2 diabetes based on machine learning theory: a cross-sectional study.
Wang S, Chen R, Wang S, Kong D, Cao R, Lin C
BMJ Open. 2023; 13(8):e069018.
PMID: 37643856
PMC: 10465890.
DOI: 10.1136/bmjopen-2022-069018.
Machine learning can accurately predict risk factors for all-cause reoperation after ACLR: creating a clinical tool to improve patient counseling and outcomes.
Johnson Q, Jabal M, Arguello A, Lu Y, Jurgensmeier K, Levy B
Knee Surg Sports Traumatol Arthrosc. 2023; 31(10):4099-4108.
PMID: 37414947
DOI: 10.1007/s00167-023-07497-7.
A role for artificial intelligence applications inside and outside of the operating theatre: a review of contemporary use associated with total knee arthroplasty.
Kurmis A
Arthroplasty. 2023; 5(1):40.
PMID: 37400876
PMC: 10318748.
DOI: 10.1186/s42836-023-00189-0.
Improved performance of machine learning models in predicting length of stay, discharge disposition, and inpatient mortality after total knee arthroplasty using patient-specific variables.
Zalikha A, Court T, Nham F, El-Othmani M, Shah R
Arthroplasty. 2023; 5(1):31.
PMID: 37393281
PMC: 10315023.
DOI: 10.1186/s42836-023-00187-2.
Assessing the predictive capacity of machine learning models using patient-specific variables in determining in-hospital outcomes after THA.
Nham F, Court T, Zalikha A, El-Othmani M, Shah R
J Orthop. 2023; 41:39-46.
PMID: 37304653
PMC: 10248727.
DOI: 10.1016/j.jor.2023.05.012.
A Machine Learning Framework for Assessing the Risk of Venous Thromboembolism in Patients Undergoing Hip or Knee Replacement.
Rasouli Dezfouli E, Delen D, Zhao H, Davazdahemami B
J Healthc Inform Res. 2023; 6(4):423-441.
PMID: 36744082
PMC: 9892391.
DOI: 10.1007/s41666-022-00121-2.