» Articles » PMID: 31251172

Interactions Between a Subset of Substrate Side Chains and AAA+ Motor Pore Loops Determine Grip During Protein Unfolding

Overview
Journal Elife
Specialty Biology
Date 2019 Jun 29
PMID 31251172
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Most AAA+ remodeling motors denature proteins by pulling on the peptide termini of folded substrates, but it is not well-understood how motors produce grip when resisting a folded domain. Here, at single amino-acid resolution, we identify the determinants of grip by measuring how substrate tail sequences alter the unfolding activity of the unfoldase-protease ClpXP. The seven amino acids abutting a stable substrate domain are key, with residues 2-6 forming a core that contributes most significantly to grip. ClpX grips large hydrophobic and aromatic side chains strongly and small, polar, or charged side chains weakly. Multiple side chains interact with pore loops synergistically to strengthen grip. In combination with recent structures, our results support a mechanism in which unfolding grip is primarily mediated by non-specific van der Waal's interactions between core side chains of the substrate tail and a subset of YVG loops at the top of the ClpX axial pore.

Citing Articles

A proteolytic AAA+ machine poised to unfold protein substrates.

Ghanbarpour A, Sauer R, Davis J Nat Commun. 2024; 15(1):9681.

PMID: 39516482 PMC: 11549327. DOI: 10.1038/s41467-024-53681-9.


Structural and mechanistic studies on human LONP1 redefine the hand-over-hand translocation mechanism.

Mindrebo J, Lander G bioRxiv. 2024; .

PMID: 38979310 PMC: 11230189. DOI: 10.1101/2024.06.24.600538.


Toxin-based screening of C-terminal tags in reveals the exceptional potency of ssrA-like degrons.

Beardslee P, Schmitz K bioRxiv. 2024; .

PMID: 38352471 PMC: 10862746. DOI: 10.1101/2024.01.29.576913.


A proteolytic AAA+ machine poised to unfold a protein substrate.

Ghanbarpour A, Sauer R, Davis J bioRxiv. 2024; .

PMID: 38168193 PMC: 10760120. DOI: 10.1101/2023.12.14.571662.


Degron-controlled protein degradation in : New Approaches and Parameters.

Cronan G, Kuzminov A bioRxiv. 2023; .

PMID: 37986802 PMC: 10659297. DOI: 10.1101/2023.11.08.566101.


References
1.
Trentini D, Suskiewicz M, Heuck A, Kurzbauer R, Deszcz L, Mechtler K . Arginine phosphorylation marks proteins for degradation by a Clp protease. Nature. 2016; 539(7627):48-53. PMC: 6640040. DOI: 10.1038/nature20122. View

2.
Martin A, Baker T, Sauer R . Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding. Nat Struct Mol Biol. 2008; 15(11):1147-51. PMC: 2610342. DOI: 10.1038/nsmb.1503. View

3.
Glynn S . Multifunctional Mitochondrial AAA Proteases. Front Mol Biosci. 2017; 4:34. PMC: 5438985. DOI: 10.3389/fmolb.2017.00034. View

4.
Kraut D, Israeli E, Schrader E, Patil A, Nakai K, Nanavati D . Sequence- and species-dependence of proteasomal processivity. ACS Chem Biol. 2012; 7(8):1444-53. PMC: 3423507. DOI: 10.1021/cb3001155. View

5.
Wojtyra U, Thibault G, Tuite A, Houry W . The N-terminal zinc binding domain of ClpX is a dimerization domain that modulates the chaperone function. J Biol Chem. 2003; 278(49):48981-90. DOI: 10.1074/jbc.M307825200. View