» Articles » PMID: 31250619

Crystal Structure of a Highly Thermostable α-Carbonic Anhydrase from Persephonella Marina EX-H1

Overview
Journal Mol Cells
Publisher Elsevier
Date 2019 Jun 29
PMID 31250619
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Bacterial α-type carbonic anhydrase (α-CA) is a zinc metalloenzyme that catalyzes the reversible and extremely rapid interconversion of carbon dioxide to bicarbonate. In this study, we report the first crystal structure of a hyperthermostable α-CA from Persephonella marina EXH1 ( CA) in the absence and presence of competitive inhibitor, acetazolamide. The structure reveals a compactly folded pm CA homodimer in which each monomer consists of a 10-stranded β-sheet in the center. The catalytic zinc ion is coordinated by three highly conserved histidine residues with an exchangeable fourth ligand (a water molecule, a bicarbonate anion, or the sulfonamide group of acetazolamide). Together with an intramolecular disulfide bond, extensive interfacial networks of hydrogen bonds, ionic and hydrophobic interactions stabilize the dimeric structure and are likely responsible for the high thermal stability. We also identified novel binding sites for calcium ions at the crystallographic interface, which serve as molecular glue linking negatively charged and otherwise repulsive surfaces. Furthermore, this large negatively charged patch appears to further increase the thermostability at alkaline pH range via favorable charge-charge interactions between pm CA and solvent molecules. These findings may assist development of novel α-CAs with improved thermal and/or alkaline stability for applications such as CO capture and sequestration.

Citing Articles

Crystal structure of γ-carbonic anhydrase from the polyextremophilic bacterium Aeribacillus pallidus.

Choi S, Jin M Mol Cells. 2024; 48(1):100165.

PMID: 39637945 PMC: 11721427. DOI: 10.1016/j.mocell.2024.100165.


Streamlining heterologous expression of top carbonic anhydrases in Escherichia coli: bioinformatic and experimental approaches.

Wei H, Lunin V, Alahuhta M, Himmel M, Huang S, Bomble Y Microb Cell Fact. 2024; 23(1):190.

PMID: 38956607 PMC: 11218372. DOI: 10.1186/s12934-024-02463-5.


Alpha Carbonic Anhydrase from Engineered for Increased Activity and Thermostability.

Manyumwa C, Zhang C, Jers C, Mijakovic I Int J Mol Sci. 2024; 25(11).

PMID: 38892041 PMC: 11173315. DOI: 10.3390/ijms25115853.


Biochemical characterization of a psychrophilic and halotolerant α-carbonic anhydrase from a deep-sea bacterium, .

Somalinga V, Foss E, Grunden A AIMS Microbiol. 2023; 9(3):540-553.

PMID: 37649802 PMC: 10462458. DOI: 10.3934/microbiol.2023028.


Comparison of Carbonic Anhydrases for CO Sequestration.

Steger F, Reich J, Fuchs W, Rittmann S, Gubitz G, Ribitsch D Int J Mol Sci. 2022; 23(2).

PMID: 35055147 PMC: 8777876. DOI: 10.3390/ijms23020957.


References
1.
Kikutani S, Nakajima K, Nagasato C, Tsuji Y, Miyatake A, Matsuda Y . Thylakoid luminal θ-carbonic anhydrase critical for growth and photosynthesis in the marine diatom Phaeodactylum tricornutum. Proc Natl Acad Sci U S A. 2016; 113(35):9828-33. PMC: 5024579. DOI: 10.1073/pnas.1603112113. View

2.
De Simone G, Monti S, Alterio V, Buonanno M, De Luca V, Rossi M . Crystal structure of the most catalytically effective carbonic anhydrase enzyme known, SazCA from the thermophilic bacterium Sulfurihydrogenibium azorense. Bioorg Med Chem Lett. 2015; 25(9):2002-6. DOI: 10.1016/j.bmcl.2015.02.068. View

3.
Xu Y, Feng L, Jeffrey P, Shi Y, Morel F . Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature. 2008; 452(7183):56-61. DOI: 10.1038/nature06636. View

4.
Emsley P, Cowtan K . Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004; 60(Pt 12 Pt 1):2126-32. DOI: 10.1107/S0907444904019158. View

5.
Jeyakanthan J, Rangarajan S, Mridula P, Kanaujia S, Shiro Y, Kuramitsu S . Observation of a calcium-binding site in the gamma-class carbonic anhydrase from Pyrococcus horikoshii. Acta Crystallogr D Biol Crystallogr. 2008; 64(Pt 10):1012-9. DOI: 10.1107/S0907444908024323. View