» Articles » PMID: 31248099

Hydrogen Storage for Mobility: A Review

Overview
Publisher MDPI
Date 2019 Jun 29
PMID 31248099
Citations 34
Authors
Affiliations
Soon will be listed here.
Abstract

Numerous reviews on hydrogen storage have previously been published. However, most of these reviews deal either exclusively with storage materials or the global hydrogen economy. This paper presents a review of hydrogen storage systems that are relevant for mobility applications. The ideal storage medium should allow high volumetric and gravimetric energy densities, quick uptake and release of fuel, operation at room temperatures and atmospheric pressure, safe use, and balanced cost-effectiveness. All current hydrogen storage technologies have significant drawbacks, including complex thermal management systems, boil-off, poor efficiency, expensive catalysts, stability issues, slow response rates, high operating pressures, low energy densities, and risks of violent and uncontrolled spontaneous reactions. While not perfect, the current leading industry standard of compressed hydrogen offers a functional solution and demonstrates a storage option for mobility compared to other technologies.

Citing Articles

Advanced TiO-Based Photocatalytic Systems for Water Splitting: Comprehensive Review from Fundamentals to Manufacturing.

Ahasan T, Edirisooriya E, Senanayake P, Xu P, Wang H Molecules. 2025; 30(5).

PMID: 40076350 PMC: 11901858. DOI: 10.3390/molecules30051127.


V-Ti-Based Solid Solution Alloys for Solid-State Hydrogen Storage.

Shen S, Li Y, Ouyang L, Zhang L, Zhu M, Liu Z Nanomicro Lett. 2025; 17(1):175.

PMID: 40035981 PMC: 11880492. DOI: 10.1007/s40820-025-01672-w.


Studies on Modification of Polyamide 6 Plastics for Hydrogen Storage.

Li L, Zhao J, Wang X, Yang Q, Wang X, Yin H Polymers (Basel). 2025; 17(4).

PMID: 40006185 PMC: 11858909. DOI: 10.3390/polym17040523.


Molecular Dynamics Simulation of Hydrogen Barrier Performance of Modified Polyamide 6 Lining of IV Hydrogen Storage Tank with Graphene.

Li J, Zhao X, Liang J, Zhao C, Feng N, Guo G Polymers (Basel). 2024; 16(15).

PMID: 39125211 PMC: 11314120. DOI: 10.3390/polym16152185.


Following the Structural Changes of Iron Oxides during Reduction under Transient Conditions.

Braun L, Spielmann J, Doronkin D, Kuhn C, Maliugin A, Sharapa D ChemSusChem. 2024; 17(24):e202401045.

PMID: 38977411 PMC: 11660749. DOI: 10.1002/cssc.202401045.


References
1.
Rosi N, Eckert J, Eddaoudi M, Vodak D, Kim J, OKeeffe M . Hydrogen storage in microporous metal-organic frameworks. Science. 2003; 300(5622):1127-9. DOI: 10.1126/science.1083440. View

2.
Thauer R, Kaster A, Seedorf H, Buckel W, Hedderich R . Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol. 2008; 6(8):579-91. DOI: 10.1038/nrmicro1931. View

3.
Proch S, Herrmannsdorfer J, Kempe R, Kern C, Jess A, Seyfarth L . Pt@MOF-177: synthesis, room-temperature hydrogen storage and oxidation catalysis. Chemistry. 2008; 14(27):8204-12. DOI: 10.1002/chem.200801043. View

4.
Hamilton C, Baker R, Staubitz A, Manners I . B-N compounds for chemical hydrogen storage. Chem Soc Rev. 2008; 38(1):279-93. DOI: 10.1039/b800312m. View

5.
Paskevicius M, Sheppard D, Buckley C . Thermodynamic changes in mechanochemically synthesized magnesium hydride nanoparticles. J Am Chem Soc. 2010; 132(14):5077-83. DOI: 10.1021/ja908398u. View