Rhizosphere Priming of Two Near-isogenic Wheat Lines Varying in Citrate Efflux Under Different Levels of Phosphorus Supply
Overview
Authors
Affiliations
Backgrounds And Aims: The rhizosphere priming effect (RPE) has been explained from the perspective of microbial responses to root exudates and nutrient availability. This study introduced a chemical process that could also contribute to RPE: root exudates (organic acid ligands) could liberate mineral-protected carbon (C) in soil for microbial degradation.
Methods: Wheat (Triticum aestivum L.) near-isogenic lines varying in citrate efflux were grown for 6 weeks in a C4 soil supplied with either low (10 μg g-1) or high P (40 μg g-1). Total below-ground CO2 was trapped and partitioned for determination of soil organic C decomposition and RPE using a stable isotopic tracing technique. Mineral dissolution was examined by incubating soil with citric ligand at a series of concentrations.
Key Results: High P increased RPE (81 %), shoot (32 %) and root biomass (57 %), root-derived CO2-C (20 %), microbial biomass C (28 %) and N (100%), soil respiration (20 %) and concentrations of water-extractable P (30 %), Fe (43 %) and Al (190 %), but decreased inorganic N in the rhizosphere. Compared with Egret-Burke, wheat line Egret-Burke TaMATE1B with citrate efflux had lower inorganic N, microbial biomass C (16 %) and N (30 %) in the rhizosphere but greater RPE (18 %), shoot biomass (12 %) and root-derived CO2-C (low P 36 %, high P 13 %). Egret-Burke TaMATE1B also had higher concentrations of water-extractable P, Fe and Al in the rhizosphere, indicating the release of mineral-protected C. In addition, citrate ligand facilitated Fe and Al release from soil, with their concentrations rising with increasing ligand concentration and incubation time.
Conclusions: While high P supply increased microbial growth and RPE possibly due to higher total root exudation, citrate efflux from the root might have facilitated the liberation of mineral-bound C, leading to the higher RPE under Egret-Burke TaMATE1B. Mineral dissolution may be an important process that regulates RPE and should be considered in future RPE research.
White P Ann Bot. 2019; .
PMID: 31599920 PMC: 6881216. DOI: 10.1093/aob/mcz162.