» Articles » PMID: 31196614

Nitro-Fatty Acid Logistics: Formation, Biodistribution, Signaling, and Pharmacology

Overview
Specialty Endocrinology
Date 2019 Jun 15
PMID 31196614
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

In addition to supporting cellular energetic demands and providing building blocks for lipid synthesis, fatty acids (FAs) are precursors of potent signaling molecules. In particular, the presence of conjugated double bonds on the fatty-acyl chain provides a preferential target for nitration generating nitro-FAs (NO-FAs). The formation of NO-FAs is a nonenzymatic process that requires reactive nitrogen species and occurs locally at the site of inflammation or during gastric acidification. NO-FAs are electrophilic and display pleiotropic signaling actions through reversible protein alkylation. This review focuses on the endogenously formed NO-FAs' mechanism of absorption, systemic distribution, signaling, and preclinical models. Understanding the dynamics of these processes will facilitate targeted dietary interventions and further the current pharmacological development aimed at low-grade inflammatory diseases.

Citing Articles

Nitro-fatty acids-mediated nitroalkylation modulates fine-tuning catalase antioxidant function during salinity stress in plants.

Chaki M, Aranda-Cano L, Begara-Morales J, Sanchez-Calvo B, Lopez-Jaramillo F, Padilla M Protein Sci. 2025; 34(3):e70076.

PMID: 40007236 PMC: 11862108. DOI: 10.1002/pro.70076.


The Octadecanoids: Synthesis and Bioactivity of 18-Carbon Oxygenated Fatty Acids in Mammals, Bacteria, and Fungi.

Revol-Cavalier J, Quaranta A, Newman J, Brash A, Hamberg M, Wheelock C Chem Rev. 2024; 125(1):1-90.

PMID: 39680864 PMC: 11719350. DOI: 10.1021/acs.chemrev.3c00520.


Development of nitroalkene-based inhibitors to target STING-dependent inflammation.

Chang F, Gunderstofte C, Colussi N, Pitts M, Salvatore S, Thielke A Redox Biol. 2024; 74:103202.

PMID: 38865901 PMC: 11215336. DOI: 10.1016/j.redox.2024.103202.


A metabolic perspective on nitric oxide function in melanoma.

Jimenez J, Dubey P, Carter B, Koomen J, Markowitz J Biochim Biophys Acta Rev Cancer. 2023; 1879(1):189038.

PMID: 38061664 PMC: 11380350. DOI: 10.1016/j.bbcan.2023.189038.


Digestive interaction between dietary nitrite and dairy products generates novel nitrated linolenic acid products.

Salvatore S, Gomez-Cortes P, Rowart P, Woodcock S, de la Fuente M, Chang F Food Chem. 2023; 437(Pt 1):137767.

PMID: 37879157 PMC: 10844836. DOI: 10.1016/j.foodchem.2023.137767.


References
1.
Fong L, Young S, Beigneux A, Bensadoun A, Oberer M, Jiang H . GPIHBP1 and Plasma Triglyceride Metabolism. Trends Endocrinol Metab. 2016; 27(7):455-469. PMC: 4927088. DOI: 10.1016/j.tem.2016.04.013. View

2.
Rom O, Khoo N, Chen Y, Villacorta L . Inflammatory signaling and metabolic regulation by nitro-fatty acids. Nitric Oxide. 2018; . PMC: 6151155. DOI: 10.1016/j.niox.2018.03.017. View

3.
DeMartino A, Kim-Shapiro D, Patel R, Gladwin M . Nitrite and nitrate chemical biology and signalling. Br J Pharmacol. 2018; 176(2):228-245. PMC: 6295445. DOI: 10.1111/bph.14484. View

4.
Khoo N, Fazzari M, Chartoumpekis D, Li L, Guimaraes D, Arteel G . Electrophilic nitro-oleic acid reverses obesity-induced hepatic steatosis. Redox Biol. 2019; 22:101132. PMC: 6375063. DOI: 10.1016/j.redox.2019.101132. View

5.
Tsikas D, Zoerner A, Mitschke A, Gutzki F . Nitro-fatty acids occur in human plasma in the picomolar range: a targeted nitro-lipidomics GC-MS/MS study. Lipids. 2009; 44(9):855-65. DOI: 10.1007/s11745-009-3332-4. View