» Articles » PMID: 31191483

Comparison of Miniaturized Raman Spectrometers for Discrimination of Carotenoids of Halophilic Microorganisms

Overview
Journal Front Microbiol
Specialty Microbiology
Date 2019 Jun 14
PMID 31191483
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

We present a comparison of the performance of four miniature portable Raman spectrometers for the discrimination of carotenoids in samples of carotene-producing microorganisms. Two spectrometers using a green laser allowing to obtain Resonance Raman (or pre-Resonance Raman) signals, one instrument with a 785 nm laser, and a recently developed Portable Sequentially Shifted Excitation Raman spectrometer (PSSERS) were used for identifying major pigments of different halophilic (genera , , , , , ) and non-halophilic microorganisms (, ). Using all the tested instruments including the PSSERS, strong carotenoids signals corresponding to the stretching vibrations in the polyene chain and in-plane rocking modes of the attached CH groups were found at the correct positions. Raman spectra of carotenoids can be obtained from different types of microbiological samples (wet pellets, lyophilized culture biomass and pigment extracts in organic solvents), and can be collected fast and without time-consuming procedures.

Citing Articles

Three-dimensional composite substrate based on pyramidal pitted silicon array adhered Au@Ag nanospheres for high-performance surface-enhanced Raman scattering.

Zhang W, Liu S, Jiang S, Zhang J, Ma H, Xu L Nanophotonics. 2024; 13(23):4303-4316.

PMID: 39678116 PMC: 11636458. DOI: 10.1515/nanoph-2024-0354.


Evaluation of astaxanthin stability under varying temperatures and ultraviolet irradiation durations based on Raman spectroscopy.

Liu X, Li W, Yue Z, Qian J, Zhu W, Dai H Food Chem X. 2024; 24:101947.

PMID: 39582650 PMC: 11582459. DOI: 10.1016/j.fochx.2024.101947.


Rapid and non-destructive identification of Anopheles gambiae and Anopheles arabiensis mosquito species using Raman spectroscopy via machine learning classification models.

Omucheni D, Kaduki K, Mukabana W Malar J. 2023; 22(1):342.

PMID: 37940964 PMC: 10634188. DOI: 10.1186/s12936-023-04777-y.


Raman quantitative monitoring of methanogenesis: Culture experiments of a deep-sea cold seep methanogenic archaeon.

Yin Z, Zheng R, Li L, Xi S, Luan Z, Sun C Front Microbiol. 2023; 14:1128064.

PMID: 37089553 PMC: 10115991. DOI: 10.3389/fmicb.2023.1128064.


In Situ Collection and Rapid Detection of Pathogenic Bacteria Using a Flexible SERS Platform Combined with a Portable Raman Spectrometer.

Zhao H, Zheng D, Wang H, Lin T, Liu W, Wang X Int J Mol Sci. 2022; 23(13).

PMID: 35806345 PMC: 9267095. DOI: 10.3390/ijms23137340.


References
1.
Edwards H, Garcia-Pichel F, Newton E, Wynn-Williams D . Vibrational raman spectroscopic study of scytonemin, the UV-protective cyanobacterial pigment. Spectrochim Acta A Mol Biomol Spectrosc. 2000; 56A(1):193-200. DOI: 10.1016/s1386-1425(99)00218-8. View

2.
Withnall R, Chowdhry B, Silver J, Edwards H, de Oliveira L . Raman spectra of carotenoids in natural products. Spectrochim Acta A Mol Biomol Spectrosc. 2003; 59(10):2207-12. DOI: 10.1016/s1386-1425(03)00064-7. View

3.
BLIGH E, Dyer W . A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959; 37(8):911-7. DOI: 10.1139/o59-099. View

4.
Jorge Villar S, Edwards H, Seaward M . Raman spectroscopy of hot desert, high altitude epilithic lichens. Analyst. 2005; 130(5):730-7. DOI: 10.1039/b501585e. View

5.
Jorge-Villar S, Benning L, Edwards H . Raman and SEM analysis of a biocolonised hot spring travertine terrace in Svalbard, Norway. Geochem Trans. 2007; 8:8. PMC: 2110888. DOI: 10.1186/1467-4866-8-8. View