» Articles » PMID: 31191282

Evaluation of Enhanced Learning Techniques for Segmenting Ischaemic Stroke Lesions in Brain Magnetic Resonance Perfusion Images Using a Convolutional Neural Network Scheme

Overview
Specialty Neurology
Date 2019 Jun 14
PMID 31191282
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Magnetic resonance (MR) perfusion imaging non-invasively measures cerebral perfusion, which describes the blood's passage through the brain's vascular network. Therefore, it is widely used to assess cerebral ischaemia. Convolutional Neural Networks (CNN) constitute the state-of-the-art method in automatic pattern recognition and hence, in segmentation tasks. But none of the CNN architectures developed to date have achieved high accuracy when segmenting ischaemic stroke lesions, being the main reasons their heterogeneity in location, shape, size, image intensity and texture, especially in this imaging modality. We use a freely available CNN framework, developed for MR imaging lesion segmentation, as core algorithm to evaluate the impact of enhanced machine learning techniques, namely data augmentation, transfer learning and post-processing, in the segmentation of stroke lesions using the ISLES 2017 dataset, which contains expert annotated diffusion-weighted perfusion and diffusion brain MRI of 43 stroke patients. Of all the techniques evaluated, data augmentation with binary closing achieved the best results, improving the mean Dice score in 17% over the baseline model. Consistent with previous works, better performance was obtained in the presence of large lesions.

Citing Articles

Distinct brain morphometry patterns revealed by deep learning improve prediction of post-stroke aphasia severity.

Teghipco A, Newman-Norlund R, Fridriksson J, Rorden C, Bonilha L Commun Med (Lond). 2024; 4(1):115.

PMID: 38866977 PMC: 11169346. DOI: 10.1038/s43856-024-00541-8.


Distinct brain morphometry patterns revealed by deep learning improve prediction of aphasia severity.

Teghipco A, Newman-Norlund R, Fridriksson J, Rorden C, Bonilha L Res Sq. 2023; .

PMID: 37461696 PMC: 10350198. DOI: 10.21203/rs.3.rs-3126126/v1.


Predicting final ischemic stroke lesions from initial diffusion-weighted images using a deep neural network.

Nazari-Farsani S, Yu Y, Duarte Armindo R, Lansberg M, Liebeskind D, Albers G Neuroimage Clin. 2022; 37:103278.

PMID: 36481696 PMC: 9727698. DOI: 10.1016/j.nicl.2022.103278.


Performance of Machine Learning for Tissue Outcome Prediction in Acute Ischemic Stroke: A Systematic Review and Meta-Analysis.

Wang X, Fan Y, Zhang N, Li J, Duan Y, Yang B Front Neurol. 2022; 13:910259.

PMID: 35873778 PMC: 9305175. DOI: 10.3389/fneur.2022.910259.


Toward automated segmentation for acute ischemic stroke using non-contrast computed tomography.

Lin S, Chiang P, Chen P, Cheng L, Chen M, Chang P Int J Comput Assist Radiol Surg. 2022; 17(4):661-671.

PMID: 35257285 DOI: 10.1007/s11548-022-02570-x.


References
1.
van Opbroek A, Ikram M, Vernooij M, De Bruijne M . Transfer learning improves supervised image segmentation across imaging protocols. IEEE Trans Med Imaging. 2014; 34(5):1018-30. DOI: 10.1109/TMI.2014.2366792. View

2.
Straka M, Albers G, Bammer R . Real-time diffusion-perfusion mismatch analysis in acute stroke. J Magn Reson Imaging. 2010; 32(5):1024-37. PMC: 2975404. DOI: 10.1002/jmri.22338. View

3.
Yi X, Walia E, Babyn P . Generative adversarial network in medical imaging: A review. Med Image Anal. 2019; 58:101552. DOI: 10.1016/j.media.2019.101552. View

4.
Kamnitsas K, Ledig C, Newcombe V, Simpson J, Kane A, Menon D . Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal. 2016; 36:61-78. DOI: 10.1016/j.media.2016.10.004. View

5.
Maier O, Menze B, von der Gablentz J, ani L, Heinrich M, Liebrand M . ISLES 2015 - A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Med Image Anal. 2016; 35:250-269. PMC: 5099118. DOI: 10.1016/j.media.2016.07.009. View