» Articles » PMID: 31190786

Lipid Metabolism in Chronic Obstructive Pulmonary Disease

Overview
Publisher Dove Medical Press
Specialty Pulmonary Medicine
Date 2019 Jun 14
PMID 31190786
Citations 43
Authors
Affiliations
Soon will be listed here.
Abstract

Dysregulated lipid metabolism plays crucial roles in various diseases, including diabetes mellitus, cancer, and neurodegeneration. Recent studies suggest that alterations in major lipid metabolic pathways contribute to pathogenesis of lung diseases, including chronic obstructive pulmonary disease (COPD). These changes allow lung tissue to meet the energy needs and trigger anabolic pathways that initiate the synthesis of active molecules directly involved in the inflammation. In this review, we summarize the changes of catabolism and anabolism of lipids, lipid molecules including lipid mediators, lipid synthesis transcription factors, cholesterol, and phospholipids, and how those lipid molecules participate in the initiation and resolution of inflammation in COPD.

Citing Articles

Systemic inflammation partially mediates the association between non-high-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio (NHHR) and chronic cough.

Wang C, Liao X, Chen J, Lan Y, Wen J Lipids Health Dis. 2025; 24(1):85.

PMID: 40050896 PMC: 11884164. DOI: 10.1186/s12944-025-02498-6.


Prevalence and clinical correlates of chronic obstructive pulmonary disease in heart failure patients: a cross-sectional study in China.

Zhu A, Hu M, Ge D, Zhang X, Zhang J, Wang Y Front Med (Lausanne). 2025; 12:1477388.

PMID: 39963431 PMC: 11831890. DOI: 10.3389/fmed.2025.1477388.


Effect of plasma free fatty acids on lung function in male COPD patients.

Yazdani R, Fallah H, Yazdani S, Shahouzehi B, Danesh B Sci Rep. 2025; 15(1):3377.

PMID: 39870734 PMC: 11772598. DOI: 10.1038/s41598-025-86628-1.


Causal Relationships Between Blood Lipid Levels and Chronic Obstructive Pulmonary Disease: A Mendelian Randomization Analysis.

Huang P, Zhao Y, Wei H, Wu W, Guo Z, Ma S Int J Chron Obstruct Pulmon Dis. 2025; 20():83-93.

PMID: 39802042 PMC: 11725246. DOI: 10.2147/COPD.S476833.


Unlocking lung regeneration: insights into progenitor cell dynamics and metabolic control.

Yang J, Li Y, Huang Y, Chen H, Sui P Cell Regen. 2024; 13(1):31.

PMID: 39676102 PMC: 11646969. DOI: 10.1186/s13619-024-00212-y.


References
1.
Craig W, Palomaki G, Haddow J . Cigarette smoking and serum lipid and lipoprotein concentrations: an analysis of published data. BMJ. 1989; 298(6676):784-8. PMC: 1836079. DOI: 10.1136/bmj.298.6676.784. View

2.
Jiang Z, Knudsen N, Wang G, Qiu W, Naing Z, Bai Y . Genetic Control of Fatty Acid β-Oxidation in Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol. 2017; 56(6):738-748. PMC: 5516290. DOI: 10.1165/rcmb.2016-0282OC. View

3.
Telenga E, Hoffmann R, TKindt R, Hoonhorst S, Willemse B, van Oosterhout A . Untargeted lipidomic analysis in chronic obstructive pulmonary disease. Uncovering sphingolipids. Am J Respir Crit Care Med. 2014; 190(2):155-64. DOI: 10.1164/rccm.201312-2210OC. View

4.
Lamonaca P, Prinzi G, Kisialiou A, Cardaci V, Fini M, Russo P . Metabolic Disorder in Chronic Obstructive Pulmonary Disease (COPD) Patients: Towards a Personalized Approach Using Marine Drug Derivatives. Mar Drugs. 2017; 15(3). PMC: 5367038. DOI: 10.3390/md15030081. View

5.
Kikuchi T, Sugiura H, Koarai A, Ichikawa T, Minakata Y, Matsunaga K . Increase of 27-hydroxycholesterol in the airways of patients with COPD: possible role of 27-hydroxycholesterol in tissue fibrosis. Chest. 2012; 142(2):329-337. DOI: 10.1378/chest.11-2091. View