» Articles » PMID: 31183865

Structural and Biochemical Analysis of a Phosin from Streptomyces Chartreusis Reveals a Combined Polyphosphate- and Metal-binding Fold

Overview
Journal FEBS Lett
Specialty Biochemistry
Date 2019 Jun 12
PMID 31183865
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

X-ray crystallographic analysis of a phosin (PptA) from Steptomyces chartreusis reveals a metal-associated, lozenge-shaped fold featuring a 5-10 Å wide, positively charged tunnel that traverses the protein core. Two distinct metal-binding sites were identified in which the predominant metal ion was Cu . In solution, PptA forms stable homodimers that bind with nanomolar affinity to polyphosphate, a stress-related biopolymer acting as a phosphate and energy reserve in conditions of nutrient depletion. A single protein dimer interacts with 14-15 consecutive phosphate moieties within the polymer. Our observations suggest that PptA plays a role in polyphosphate metabolism, mobilisation or sensing, possibly by acting in concert with polyphosphate kinase (Ppk). Like Ppk, phosins may influence antibiotic synthesis by streptomycetes.

Citing Articles

Possible Role of CHAD Proteins in Copper Resistance.

Gonzalez-Madrid G, Navarro C, Acevedo-Lopez J, Orellana L, Jerez C Microorganisms. 2024; 12(2).

PMID: 38399813 PMC: 10892726. DOI: 10.3390/microorganisms12020409.


Crystal structures of free and ligand-bound forms of the TetR/AcrR-like regulator SCO3201 from Streptomyces coelicolor suggest a novel allosteric mechanism.

Werten S, Waack P, Palm G, Virolle M, Hinrichs W FEBS J. 2022; 290(2):521-532.

PMID: 36017630 PMC: 10087246. DOI: 10.1111/febs.16606.


A Proteomic Analysis Indicates That Oxidative Stress Is the Common Feature Triggering Antibiotic Production in and in the Mutant of .

Lejeune C, Sago L, Cornu D, Redeker V, Virolle M Front Microbiol. 2022; 12:813993.

PMID: 35392450 PMC: 8981147. DOI: 10.3389/fmicb.2021.813993.


The Phosin PptA Plays a Negative Role in the Regulation of Antibiotic Production in .

Shikura N, Darbon E, Esnault C, Deniset-Besseau A, Xu D, Lejeune C Antibiotics (Basel). 2021; 10(3).

PMID: 33804592 PMC: 8003754. DOI: 10.3390/antibiotics10030325.


Molecular Mechanisms of Phosphate Sensing, Transport and Signalling in Streptomyces and Related Actinobacteria.

Martin J, Liras P Int J Mol Sci. 2021; 22(3).

PMID: 33498785 PMC: 7866108. DOI: 10.3390/ijms22031129.


References
1.
Hsieh Y, Wanner B . Global regulation by the seven-component Pi signaling system. Curr Opin Microbiol. 2010; 13(2):198-203. PMC: 2847643. DOI: 10.1016/j.mib.2010.01.014. View

2.
Ghorbel S, Smirnov A, Chouayekh H, Sperandio B, Esnault C, Kormanec J . Regulation of ppk expression and in vivo function of Ppk in Streptomyces lividans TK24. J Bacteriol. 2006; 188(17):6269-76. PMC: 1595360. DOI: 10.1128/JB.00202-06. View

3.
. The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr. 1994; 50(Pt 5):760-3. DOI: 10.1107/S0907444994003112. View

4.
Mueller U, Darowski N, Fuchs M, Forster R, Hellmig M, Paithankar K . Facilities for macromolecular crystallography at the Helmholtz-Zentrum Berlin. J Synchrotron Radiat. 2012; 19(Pt 3):442-9. PMC: 3408958. DOI: 10.1107/S0909049512006395. View

5.
Sola-Landa A, Moura R, Martin J . The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. Proc Natl Acad Sci U S A. 2003; 100(10):6133-8. PMC: 156338. DOI: 10.1073/pnas.0931429100. View