» Articles » PMID: 3118368

Peroxisomes in Wild-type and Rosy Mutant Drosophila Melanogaster

Overview
Specialty Science
Date 1987 Nov 1
PMID 3118368
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

This study shows that peroxisomes are abundant in the Malpighian tubule and gut of wild-type Oregon R Drosophila melanogaster and that the peroxisomal population of the rosy-506 eye-color mutant differs from that of the wild type. Catalase activity in wild-type flies is demonstrable in bodies of appearance and centrifugal behavior comparable to the peroxisomes of vertebrate tissues. Xanthine oxidase (xanthine:oxygen oxidoreductase, EC 1.1.3.22) activity of the Malpighian tubule of wild-type flies is demonstrable cytochemically in bodies like those containing catalase. The rosy-506 mutant flies, with a deletion in the structural gene for xanthine dehydrogenase (xanthine:NAD+ oxidoreductase, EC 1.1.1.204), lack cytochemically demonstrable peroxisomal xanthine oxidase activity. In addition, peroxisomes in the rosy-506 mutants show less intense cytochemical staining for catalase than those in wild-type flies, and biochemical assays indicate that catalase in the rosy mutant is much more accessible to substrate in the absence of detergent than in the wild type. Thus, the rosy-506 mutation appears to affect peroxisomes and may mimic aspects of the defects of peroxisomes in some human metabolic disorders.

Citing Articles

Rosy Beginnings: Studying Peroxisomes in .

Pridie C, Ueda K, Simmonds A Front Cell Dev Biol. 2020; 8:835.

PMID: 32984330 PMC: 7477296. DOI: 10.3389/fcell.2020.00835.


Bioinformatic prediction of critical genes and pathways involved in longevity in Drosophila melanogaster.

Li J, Duan D, Zhang J, Zhou Y, Qin X, Du G Mol Genet Genomics. 2019; 294(6):1463-1475.

PMID: 31327054 DOI: 10.1007/s00438-019-01589-1.


Distinct Roles for Peroxisomal Targeting Signal Receptors Pex5 and Pex7 in .

Di Cara F, Rachubinski R, Simmonds A Genetics. 2018; 211(1):141-149.

PMID: 30389805 PMC: 6325700. DOI: 10.1534/genetics.118.301628.


Dysfunctional peroxisomes compromise gut structure and host defense by increased cell death and Tor-dependent autophagy.

Di Cara F, Bulow M, Simmonds A, Rachubinski R Mol Biol Cell. 2018; 29(22):2766-2783.

PMID: 30188767 PMC: 6249834. DOI: 10.1091/mbc.E18-07-0434.


A library of MiMICs allows tagging of genes and reversible, spatial and temporal knockdown of proteins in Drosophila.

Nagarkar-Jaiswal S, Lee P, Campbell M, Chen K, Anguiano-Zarate S, Gutierrez M Elife. 2015; 4.

PMID: 25824290 PMC: 4379497. DOI: 10.7554/eLife.05338.


References
1.
Baudhuin P, BEAUFAY H, RAHMAN-LI Y, Sellinger O, WATTIAUX R, Jacques P . Tissue fractionation studies. 17. Intracellular distribution of monoamine oxidase, aspartate aminotransferase, alanine aminotransferase, D-amino acid oxidase and catalase in rat-liver tissue. Biochem J. 1964; 92(1):179-84. PMC: 1215456. DOI: 10.1042/bj0920179. View

2.
Keller Jr E, Glassman E . A THIRD LOCUS (LXD) AFFECTING XANTHINE DEHYDROGENASE IN DROSOPHILA MELANOGASTER. Genetics. 1964; 49:663-8. PMC: 1210604. DOI: 10.1093/genetics/49.4.663. View

3.
Stirpe F, Della Corte E . The regulation of rat liver xanthine oxidase. Conversion in vitro of the enzyme activity from dehydrogenase (type D) to oxidase (type O). J Biol Chem. 1969; 244(14):3855-63. View

4.
Hirai K . Light microscopic study of the peroxidatic activity of catalase in formaldehyde-fixed rat liver. J Histochem Cytochem. 1969; 17(9):585-90. DOI: 10.1177/17.9.585. View

5.
Scott P, Visentin L, Allen J . The enzymatic characteristics of peroxisomes of amphibian and avian liver and kidney. Ann N Y Acad Sci. 1969; 168(2):244-64. DOI: 10.1111/j.1749-6632.1969.tb43113.x. View