» Articles » PMID: 31178650

Quench Analyses of the MIT 1.3-GHz LTS/HTS NMR Magnet

Overview
Date 2019 Jun 11
PMID 31178650
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

The MIT 1.3-GHz LTS/HTS NMR magnet is currently under development. The unique features of this magnet include a 3-nested formation for an 800-MHz REBCO insert (H800) and the no-insulation (NI) winding technique for H800 coils. Because when it is driven to the normal state, an NI REBCO magnet will respond electromagnetically, thermally, and mechanically that may result in permanent magnet damage, analysis of a quenching magnet is a key aspect of HTS magnet protection. We have developed a partial element equivalent circuit method coupled to a thermal and stress finite element method to analyze electromagnetic and mechanical responses of a nested-coil REBCO magnet each a stack of NI pancake coils. Using this method, quench simulations of the MIT 1.3-GHz LTS (L500)/HTS (H800) NMR magnet (1.3G), we have evaluated currents, strains, and torques of H800 Coil 1 to Coil 3 and L500, and center fields of 1.3G, L500, and H800. Our analyses show H800 is vulnerable to mechanical damage.

Citing Articles

Construction and Test of the 19.6-T Solid-Nitrogen-Cooled REBCO Insert Magnet for the MIT 1.3-GHz NMR System.

Dong F, Park D, Sadde P, Bascunan J, Iwasa Y Supercond Sci Technol. 2025; 38(3).

PMID: 40061950 PMC: 11884623.


A surface-shunting method for the prevention of a fault-mode-induced quench in high-field no-insulation REBCO magnets.

Dong F, Park D, Kim J, Bascunan J, Iwasa Y Supercond Sci Technol. 2024; 37(11).

PMID: 39430005 PMC: 11488656. DOI: 10.1088/1361-6668/ad826a.


Review of progress and challenges of key mechanical issues in high-field superconducting magnets.

Zhou Y, Park D, Iwasa Y Natl Sci Rev. 2023; 10(3):nwad001.

PMID: 37007748 PMC: 10065139. DOI: 10.1093/nsr/nwad001.


On fault-mode phenomenon in no-insulation superconducting magnets: A preventive approach.

Dong F, Park D, Lee W, Hao L, Huang Z, Bascunan J Appl Phys Lett. 2022; 121(19):194101.

PMID: 36388449 PMC: 9652021. DOI: 10.1063/5.0122493.


Partial-Insulation HTS Magnet for Reduction of Quench-Induced Peak Currents.

Lee W, Park D, Bascunan J, Iwasa Y IEEE Trans Appl Supercond. 2022; 32(6).

PMID: 36185338 PMC: 9524365. DOI: 10.1109/tasc.2022.3156064.


References
1.
Park D, Bascunan J, Michael P, Lee J, Hahn S, Iwasa Y . Construction and Test Results of Coils 2 and 3 of a 3-Nested-Coil 800-MHz REBCO Insert for the MIT 1.3-GHz LTS/HTS NMR Magnet. IEEE Trans Appl Supercond. 2018; 28(3). PMC: 5884159. DOI: 10.1109/TASC.2017.2780043. View

2.
Wang X, Hahn S, Kim Y, Bascunan J, Voccio J, Lee H . Turn-to-turn contact characteristics for an equivalent circuit model of no-insulation ReBCO pancake coil. Supercond Sci Technol. 2020; 26(3). PMC: 7453556. DOI: 10.1088/0953-2048/26/3/035012. View

3.
Hahn S, Park D, Voccio J, Bascunan J, Iwasa Y . No-Insulation (NI) HTS Inserts for > 1 GHz LTS/HTS NMR Magnets. IEEE Trans Appl Supercond. 2019; 22(3). PMC: 6508685. DOI: 10.1109/TASC.2011.2178976. View

4.
Iwasa Y, Bascunan J, Hahn S, Voccio J, Kim Y, Lecrevisse T . A High-Resolution 1.3-GHz/54-mm LTS/HTS NMR Magnet. IEEE Trans Appl Supercond. 2020; 25(3). PMC: 7500413. DOI: 10.1109/tasc.2014.2363496. View

5.
Wang T, Noguchi S, Wang X, Arakawa I, Minami K, Monma K . Analyses of Transient Behaviors of No-Insulation REBCO Pancake Coils During Sudden Discharging and Overcurrent. IEEE Trans Appl Supercond. 2020; 25(3). PMC: 7500416. DOI: 10.1109/tasc.2015.2393058. View