» Articles » PMID: 31165049

Structural Determinants of the APOBEC3G N-Terminal Domain for HIV-1 RNA Association

Abstract

APOBEC3G (A3G) is a cellular protein that inhibits HIV-1 infection through virion incorporation. The interaction of the A3G N-terminal domain (NTD) with RNA is essential for A3G incorporation in the HIV-1 virion. The interaction between A3G-NTD and RNA is not completely understood. The A3G-NTD is also recognized by HIV-1 Viral infectivity factor (Vif) and A3G-Vif binding leads to A3G degradation. Therefore, the A3G-Vif interaction is a target for the development of antiviral therapies that block HIV-1 replication. However, targeting the A3G-Vif interactions could disrupt the A3G-RNA interactions that are required for A3G's antiviral activity. To better understand A3G-RNA binding, we generated o docking models to simulate the RNA-binding propensity of A3G-NTD. We simulated the A3G-NTD residues with high RNA-binding propensity, experimentally validated our prediction by testing A3G-NTD mutations, and identified structural determinants of A3G-RNA binding. In addition, we found a novel amino acid residue, I26 responsible for RNA interaction. The new structural insights provided here will facilitate the design of pharmaceuticals that inhibit A3G-Vif interactions without negatively impacting A3G-RNA interactions.

Citing Articles

Molecular mechanism for regulating APOBEC3G DNA editing function by the non-catalytic domain.

Yang H, Pacheco J, Kim K, Bokani A, Ito F, Ebrahimi D Nat Commun. 2024; 15(1):8773.

PMID: 39389938 PMC: 11467180. DOI: 10.1038/s41467-024-52671-1.


Synthesis, characterization, computational analyses, in silico ADMET studies, and inhibitory action against SARS-CoV-2 main protease (Mpro) of a Schiff base.

Sahin S, Dege N Turk J Chem. 2023; 46(5):1548-1564.

PMID: 37529731 PMC: 10390206. DOI: 10.55730/1300-0527.3460.


Insights Into Persistent HIV-1 Infection and Functional Cure: Novel Capabilities and Strategies.

Ta T, Malik S, Anderson E, Jones A, Perchik J, Freylikh M Front Microbiol. 2022; 13:862270.

PMID: 35572626 PMC: 9093714. DOI: 10.3389/fmicb.2022.862270.


Characterization of an A3G-Vif-CRL5-CBFβ Structure Using a Cross-linking Mass Spectrometry Pipeline for Integrative Modeling of Host-Pathogen Complexes.

Kaake R, Echeverria I, Kim S, Von Dollen J, Chesarino N, Feng Y Mol Cell Proteomics. 2021; 20:100132.

PMID: 34389466 PMC: 8459920. DOI: 10.1016/j.mcpro.2021.100132.


FRET-Based Detection and Quantification of HIV-1 Virion Maturation.

Sarca A, Sardo L, Fukuda H, Matsui H, Shirakawa K, Horikawa K Front Microbiol. 2021; 12:647452.

PMID: 33767685 PMC: 7985248. DOI: 10.3389/fmicb.2021.647452.


References
1.
Friew Y, Boyko V, Hu W, Pathak V . Intracellular interactions between APOBEC3G, RNA, and HIV-1 Gag: APOBEC3G multimerization is dependent on its association with RNA. Retrovirology. 2009; 6:56. PMC: 2700067. DOI: 10.1186/1742-4690-6-56. View

2.
Luo K, Liu B, Xiao Z, Yu Y, Yu X, Gorelick R . Amino-terminal region of the human immunodeficiency virus type 1 nucleocapsid is required for human APOBEC3G packaging. J Virol. 2004; 78(21):11841-52. PMC: 523292. DOI: 10.1128/JVI.78.21.11841-11852.2004. View

3.
Schumacher A, Hache G, MacDuff D, Brown W, Harris R . The DNA deaminase activity of human APOBEC3G is required for Ty1, MusD, and human immunodeficiency virus type 1 restriction. J Virol. 2008; 82(6):2652-60. PMC: 2259018. DOI: 10.1128/JVI.02391-07. View

4.
Gorle S, Pan Y, Sun Z, Shlyakhtenko L, Harris R, Lyubchenko Y . Computational Model and Dynamics of Monomeric Full-Length APOBEC3G. ACS Cent Sci. 2017; 3(11):1180-1188. PMC: 5704289. DOI: 10.1021/acscentsci.7b00346. View

5.
Matume N, Tebit D, Gray L, Turner S, Rekosh D, Bessong P . Characterization of APOBEC3 variation in a population of HIV-1 infected individuals in northern South Africa. BMC Med Genet. 2019; 20(1):21. PMC: 6339282. DOI: 10.1186/s12881-018-0740-4. View