» Articles » PMID: 31109002

Melt Electrospinning Designs for Nanofiber Fabrication for Different Applications

Overview
Journal Int J Mol Sci
Publisher MDPI
Date 2019 May 22
PMID 31109002
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Nanofibers have been attracting growing attention owing to their outstanding physicochemical and structural properties as well as diverse and intriguing applications. Electrospinning has been known as a simple, flexible, and multipurpose technique for the fabrication of submicro scale fibers. Throughout the last two decades, numerous investigations have focused on the employment of electrospinning techniques to improve the characteristics of fabricated fibers. This review highlights the state of the art of melt electrospinning and clarifies the major categories based on multitemperature control, gas assist, laser melt, coaxial, and needleless designs. In addition, we represent the effect of melt electrospinning process parameters on the properties of produced fibers. Finally, this review summarizes the challenges and obstacles connected to the melt electrospinning technique.

Citing Articles

Micro- and Nanostructured Fibrous Composites via Electro-Fluid Dynamics: Design and Applications for Brain.

Renkler N, Scialla S, Russo T, DAmora U, Cruz-Maya I, De Santis R Pharmaceutics. 2024; 16(1).

PMID: 38276504 PMC: 10819193. DOI: 10.3390/pharmaceutics16010134.


Effects of Six Processing Parameters on the Size of PCL Fibers Prepared by Melt Electrospinning Writing.

Xie Y, Fang Q, Zhao H, Li Y, Lin Z, Chen J Micromachines (Basel). 2023; 14(7).

PMID: 37512748 PMC: 10385759. DOI: 10.3390/mi14071437.


Electrospun nanofibers for medical face mask with protection capabilities against viruses: State of the art and perspective for industrial scale-up.

Cimini A, Imperi E, Picano A, Rossi M Appl Mater Today. 2023; 32:101833.

PMID: 37152683 PMC: 10151159. DOI: 10.1016/j.apmt.2023.101833.


The Effect of Electrical Polarity on the Diameter of Biobased Polybutylene Succinate Fibers during Melt Electrospinning.

Ostheller M, Balakrishnan N, Groten R, Seide G Polymers (Basel). 2022; 14(14).

PMID: 35890641 PMC: 9321530. DOI: 10.3390/polym14142865.


Research Progress on Sound Absorption of Electrospun Fibrous Composite Materials.

Li X, Peng Y, He Y, Zhang C, Zhang D, Liu Y Nanomaterials (Basel). 2022; 12(7).

PMID: 35407241 PMC: 9000626. DOI: 10.3390/nano12071123.


References
1.
Xu H, Bronner T, Yamamoto M, Yamane H . Regeneration of cellulose dissolved in ionic liquid using laser-heated melt-electrospinning. Carbohydr Polym. 2018; 201:182-188. DOI: 10.1016/j.carbpol.2018.08.062. View

2.
Guan X, Zheng G, Dai K, Liu C, Yan X, Shen C . Carbon Nanotubes-Adsorbed Electrospun PA66 Nanofiber Bundles with Improved Conductivity and Robust Flexibility. ACS Appl Mater Interfaces. 2016; 8(22):14150-9. DOI: 10.1021/acsami.6b02888. View

3.
McCann J, Marquez M, Xia Y . Melt coaxial electrospinning: a versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers. Nano Lett. 2006; 6(12):2868-72. DOI: 10.1021/nl0620839. View

4.
Li Y, Wang X, Yu S, Zhao Y, Yan X, Zheng J . Bubble Melt Electrospinning for Production of Polymer Microfibers. Polymers (Basel). 2019; 10(11). PMC: 6401807. DOI: 10.3390/polym10111246. View

5.
Bhardwaj N, Kundu S . Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv. 2010; 28(3):325-47. DOI: 10.1016/j.biotechadv.2010.01.004. View