» Articles » PMID: 31084705

Imaging Single-cell Blood Flow in the Smallest to Largest Vessels in the Living Retina

Overview
Journal Elife
Specialty Biology
Date 2019 May 16
PMID 31084705
Citations 44
Authors
Affiliations
Soon will be listed here.
Abstract

Tissue light scatter limits the visualization of the microvascular network deep inside the living mammal. The transparency of the mammalian eye provides a noninvasive view of the microvessels of the retina, a part of the central nervous system. Despite its clarity, imperfections in the optics of the eye blur microscopic retinal capillaries, and single blood cells flowing within. This limits early evaluation of microvascular diseases that originate in capillaries. To break this barrier, we use 15 kHz adaptive optics imaging to noninvasively measure single-cell blood flow, in one of the most widely used research animals: the C57BL/6J mouse. Measured flow ranged four orders of magnitude (0.0002-1.55 µL min) across the full spectrum of retinal vessel diameters (3.2-45.8 µm), without requiring surgery or contrast dye. Here, we describe the ultrafast imaging, analysis pipeline and automated measurement of millions of blood cell speeds.

Citing Articles

Characterization of the Retinal Circulation of the Mouse.

Shang F, Schallek J Invest Ophthalmol Vis Sci. 2024; 65(14):3.

PMID: 39620830 PMC: 11613998. DOI: 10.1167/iovs.65.14.3.


A High-Fidelity Computational Model for Predicting Blood Cell Trafficking and 3D Capillary Hemodynamics in Retinal Microvascular Networks.

Ebrahimi S, Bedggood P, Ding Y, Metha A, Bagchi P Invest Ophthalmol Vis Sci. 2024; 65(13):37.

PMID: 39546289 PMC: 11580294. DOI: 10.1167/iovs.65.13.37.


No cardiac phase bias for threat-related distance perception under naturalistic conditions in immersive virtual reality.

Klotzsche F, Motyka P, Molak A, Sahula V, Darmova B, Byrnes C R Soc Open Sci. 2024; 11(10):241072.

PMID: 39479236 PMC: 11521594. DOI: 10.1098/rsos.241072.


Depth-Dependent Contributions of Various Vascular Zones to Cerebral Autoregulation and Functional Hyperemia: An In-Silico Analysis.

Esfandi H, Javidan M, Anderson R, Pashaie R bioRxiv. 2024; .

PMID: 39416222 PMC: 11482864. DOI: 10.1101/2024.10.07.616950.


volumetric analysis of retinal vascular hemodynamics in mice with spatio-temporal optical coherence tomography.

Wegrzyn P, Kulesza W, Wielgo M, Tomczewski S, Galinska A, Balamut B Neurophotonics. 2024; 11(4):0450031-4500322.

PMID: 39380716 PMC: 11460669. DOI: 10.1117/1.NPh.11.4.045003.


References
1.
Riva C, Grunwald J, Sinclair S, Petrig B . Blood velocity and volumetric flow rate in human retinal vessels. Invest Ophthalmol Vis Sci. 1985; 26(8):1124-32. View

2.
Fedosov D, Caswell B, Popel A, Karniadakis G . Blood flow and cell-free layer in microvessels. Microcirculation. 2010; 17(8):615-28. PMC: 3529161. DOI: 10.1111/j.1549-8719.2010.00056.x. View

3.
Kornfield T, Newman E . Measurement of Retinal Blood Flow Using Fluorescently Labeled Red Blood Cells. eNeuro. 2015; 2(2). PMC: 4465795. DOI: 10.1523/ENEURO.0005-15.2015. View

4.
Roorda A, Romero-Borja F, Donnelly Iii W, Queener H, Hebert T, Campbell M . Adaptive optics scanning laser ophthalmoscopy. Opt Express. 2009; 10(9):405-12. DOI: 10.1364/oe.10.000405. View

5.
Yang Q, Yin L, Nozato K, Zhang J, Saito K, Merigan W . Calibration-free sinusoidal rectification and uniform retinal irradiance in scanning light ophthalmoscopy. Opt Lett. 2014; 40(1):85-8. PMC: 4455553. DOI: 10.1364/OL.40.000085. View