» Articles » PMID: 31079555

Leucine Metabolites Do Not Attenuate Training-induced Inflammation in Young Resistance Trained Men

Overview
Journal J Sports Sci
Publisher Routledge
Specialty Orthopedics
Date 2019 May 14
PMID 31079555
Citations 2
Authors
Affiliations
Soon will be listed here.
Abstract

Leucine metabolites may reduce training-induced inflammation; however, there is scant evidence for this assertion. We conducted a double-blind randomized controlled pragmatic trial where 40 male participants were allocated into 4 groups: α-hydroxyisocaproic acid group ([α-HICA], n = 10, Fat-free mass [FFM] = 62.0 ± 7.1 kg), β-hydroxy-β-methylbutyrate free acid group ([HMB-FA], n = 11, FFM = 62.7 ± 10.5 kg), calcium β-hydroxy-β-methylbutyrate group ([HMB-Ca], n = 9, FFM = 65.6 ± 10.1 kg) or placebo group ([PLA]; n = 10, FFM = 64.2 ± 5.7 kg). An 8-week whole-body resistance training routine (3 training sessions per week) was employed to induce gains in skeletal-muscle thickness. Skeletal muscle thickness (MT), one repetition maximum (1RM), interleukin-6 (IL-6), high-sensitivity C-reactive protein (hsCRP) and tumour necrosis factor alpha (TNF-α) were assessed at baseline and at the end of weeks 4 and 8. Time-dependent increases were detected from baseline to week 8 for MT (vastus lateralis: p = 0.009; rectus femoris: p = 0.018), 1RM (back squat: α-HICA, 18.5% ± 18.9%; HMB-FA, 23.2% ± 16%; HMB-Ca, 10.5% ± 13.8%; PLA, 19.7% ± 9% and bench press: α-HICA, 13.8% ± 19.1%; HMB-FA, 15.5% ± 9.3%; HMB-Ca, 10% ± 10.4%; PLA, 14.4 ± 11.3%, both p < 0.001), IL-6, hsCRP (both p < 0.001) and TNF-α (p = 0.045). No differences were found between groups at any time point. No leucine metabolite attenuated inflammation during training. Additionally, backwards elimination regressions showed that no circulating inflammatory marker consistently shared variance with the change in any outcome. Using leucine metabolites to modulate inflammation cannot be recommended from the results obtained herein. Furthermore, increases in inflammatory markers, from training, do not correlate with any outcome variable and are likely the result of training adaptations.

Citing Articles

α-Hydroxyisocaproic Acid Decreases Protein Synthesis but Attenuates TNFα/IFNγ Co-Exposure-Induced Protein Degradation and Myotube Atrophy via Suppression of iNOS and IL-6 in Murine C2C12 Myotube.

Sumi K, Sakuda M, Munakata K, Nakamura K, Ashida K Nutrients. 2021; 13(7).

PMID: 34371902 PMC: 8308709. DOI: 10.3390/nu13072391.


Nutritional Strategies to Offset Disuse-Induced Skeletal Muscle Atrophy and Anabolic Resistance in Older Adults: From Whole-Foods to Isolated Ingredients.

Marshall R, Smeuninx B, Morgan P, Breen L Nutrients. 2020; 12(5).

PMID: 32466126 PMC: 7284346. DOI: 10.3390/nu12051533.