» Articles » PMID: 31074743

Computational Mechanisms of Curiosity and Goal-directed Exploration

Overview
Journal Elife
Specialty Biology
Date 2019 May 11
PMID 31074743
Citations 62
Authors
Affiliations
Soon will be listed here.
Abstract

Successful behaviour depends on the right balance between maximising reward and soliciting information about the world. Here, we show how different types of information-gain emerge when casting behaviour as surprise minimisation. We present two distinct mechanisms for goal-directed exploration that express separable profiles of active sampling to reduce uncertainty. 'Hidden state' exploration motivates agents to sample unambiguous observations to accurately infer the (hidden) state of the world. Conversely, 'model parameter' exploration, compels agents to sample outcomes associated with high uncertainty, if they are informative for their representation of the task structure. We illustrate the emergence of these types of information-gain, termed active inference and active learning, and show how these forms of exploration induce distinct patterns of 'Bayes-optimal' behaviour. Our findings provide a computational framework for understanding how distinct levels of uncertainty systematically affect the exploration-exploitation trade-off in decision-making.

Citing Articles

Learning dynamic cognitive map with autonomous navigation.

de Tinguy D, Verbelen T, Dhoedt B Front Comput Neurosci. 2024; 18:1498160.

PMID: 39723170 PMC: 11668591. DOI: 10.3389/fncom.2024.1498160.


Stimulus-repetition effects on macaque V1 and V4 microcircuits explain gamma-synchronization increase.

Katsanevaki C, Bosman C, Friston K, Fries P bioRxiv. 2024; .

PMID: 39713348 PMC: 11661063. DOI: 10.1101/2024.12.06.627165.


Generative models for sequential dynamics in active inference.

Parr T, Friston K, Pezzulo G Cogn Neurodyn. 2024; 18(6):3259-3272.

PMID: 39712086 PMC: 11655747. DOI: 10.1007/s11571-023-09963-x.


A hierarchical active inference model of spatial alternation tasks and the hippocampal-prefrontal circuit.

Van de Maele T, Dhoedt B, Verbelen T, Pezzulo G Nat Commun. 2024; 15(1):9892.

PMID: 39543207 PMC: 11564537. DOI: 10.1038/s41467-024-54257-3.


Three diverse motives for information sharing.

Vellani V, Glickman M, Sharot T Commun Psychol. 2024; 2(1):107.

PMID: 39506099 PMC: 11541573. DOI: 10.1038/s44271-024-00144-y.


References
1.
Weickert T, Goldberg T, Callicott J, Chen Q, Apud J, Das S . Neural correlates of probabilistic category learning in patients with schizophrenia. J Neurosci. 2009; 29(4):1244-54. PMC: 2775494. DOI: 10.1523/JNEUROSCI.4341-08.2009. View

2.
Pezzulo G, Rigoli F, Friston K . Hierarchical Active Inference: A Theory of Motivated Control. Trends Cogn Sci. 2018; 22(4):294-306. PMC: 5870049. DOI: 10.1016/j.tics.2018.01.009. View

3.
Schwartenbeck P, FitzGerald T, Mathys C, Dolan R, Friston K . The Dopaminergic Midbrain Encodes the Expected Certainty about Desired Outcomes. Cereb Cortex. 2014; 25(10):3434-45. PMC: 4585497. DOI: 10.1093/cercor/bhu159. View

4.
Smith T, Beran M, Young M . Gambling in rhesus macaques (Macaca mulatta): The effect of cues signaling risky choice outcomes. Learn Behav. 2017; 45(3):288-299. PMC: 5647206. DOI: 10.3758/s13420-017-0270-5. View

5.
Itti L, Baldi P . Bayesian surprise attracts human attention. Vision Res. 2008; 49(10):1295-306. PMC: 2782645. DOI: 10.1016/j.visres.2008.09.007. View