» Articles » PMID: 31062850

Whole Genome Shotgun Phylogenomics Resolves the Pattern and Timing of Swallowtail Butterfly Evolution

Overview
Journal Syst Biol
Specialty Biology
Date 2019 May 8
PMID 31062850
Citations 34
Authors
Affiliations
Soon will be listed here.
Abstract

Evolutionary relationships have remained unresolved in many well-studied groups, even though advances in next-generation sequencing and analysis, using approaches such as transcriptomics, anchored hybrid enrichment, or ultraconserved elements, have brought systematics to the brink of whole genome phylogenomics. Recently, it has become possible to sequence the entire genomes of numerous nonbiological models in parallel at reasonable cost, particularly with shotgun sequencing. Here, we identify orthologous coding sequences from whole-genome shotgun sequences, which we then use to investigate the relevance and power of phylogenomic relationship inference and time-calibrated tree estimation. We study an iconic group of butterflies-swallowtails of the family Papilionidae-that has remained phylogenetically unresolved, with continued debate about the timing of their diversification. Low-coverage whole genomes were obtained using Illumina shotgun sequencing for all genera. Genome assembly coupled to BLAST-based orthology searches allowed extraction of 6621 orthologous protein-coding genes for 45 Papilionidae species and 16 outgroup species (with 32% missing data after cleaning phases). Supermatrix phylogenomic analyses were performed with both maximum-likelihood (IQ-TREE) and Bayesian mixture models (PhyloBayes) for amino acid sequences, which produced a fully resolved phylogeny providing new insights into controversial relationships. Species tree reconstruction from gene trees was performed with ASTRAL and SuperTriplets and recovered the same phylogeny. We estimated gene site concordant factors to complement traditional node-support measures, which strengthens the robustness of inferred phylogenies. Bayesian estimates of divergence times based on a reduced data set (760 orthologs and 12% missing data) indicate a mid-Cretaceous origin of Papilionoidea around 99.2 Ma (95% credibility interval: 68.6-142.7 Ma) and Papilionidae around 71.4 Ma (49.8-103.6 Ma), with subsequent diversification of modern lineages well after the Cretaceous-Paleogene event. These results show that shotgun sequencing of whole genomes, even when highly fragmented, represents a powerful approach to phylogenomics and molecular dating in a group that has previously been refractory to resolution.

Citing Articles

Tempo and mode of winter diapause evolution in butterflies.

Halali S, Yapar E, Wheat C, Wahlberg N, Gotthard K, Chazot N Evol Lett. 2025; 9(1):125-136.

PMID: 39906583 PMC: 11790229. DOI: 10.1093/evlett/qrae054.


A taxon-rich and genome-scale phylogeny of Opisthokonta.

Liu H, Steenwyk J, Zhou X, Schultz D, Kocot K, Shen X PLoS Biol. 2024; 22(9):e3002794.

PMID: 39283949 PMC: 11426530. DOI: 10.1371/journal.pbio.3002794.


Immigration allows population persistence and maintains genetic diversity despite an attempted experimental extinction.

Park K, Lucas M, Chaulk A, Matter S, Roland J, Keyghobadi N R Soc Open Sci. 2024; 11(7):240557.

PMID: 39086829 PMC: 11288673. DOI: 10.1098/rsos.240557.


Genome-Wide Gene Birth-Death Dynamics Are Associated with Diet Breadth Variation in Lepidoptera.

Dort H, van der Bijl W, Wahlberg N, Nylin S, Wheat C Genome Biol Evol. 2024; 16(7).

PMID: 38976568 PMC: 11229701. DOI: 10.1093/gbe/evae095.


Phylogenomic analysis and molecular identification of true fruit flies.

He R, Wang S, Li Q, Wang Z, Mei Y, Li F Front Genet. 2024; 15:1414074.

PMID: 38974385 PMC: 11224437. DOI: 10.3389/fgene.2024.1414074.