» Articles » PMID: 31061071

Multiplane Calcium Imaging Reveals Disrupted Development of Network Topology in Zebrafish Mutants

Overview
Journal eNeuro
Specialty Neurology
Date 2019 May 8
PMID 31061071
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Functional brain networks self-assemble during development, although the molecular basis of network assembly is poorly understood. Protocadherin-19 () is a homophilic cell adhesion molecule that is linked to neurodevelopmental disorders, and influences multiple cellular and developmental events in zebrafish. Although loss of in humans and model organisms leads to functional deficits, the underlying network defects remain unknown. Here, we employ multiplane, resonant-scanning two-photon calcium imaging of developing zebrafish, and use graph theory to characterize the development of resting state functional networks in both wild-type and mutant larvae. We find that the brain networks of mutants display enhanced clustering and an altered developmental trajectory of network assembly. Our results show that functional imaging and network analysis in zebrafish larvae is an effective approach for characterizing the developmental impact of lesions in genes of clinical interest.

Citing Articles

Canalization of circuit assembly by δ-protocadherins in the zebrafish optic tectum.

Biswas S, Emond M, Philip G, Jontes J, Jontes J bioRxiv. 2025; .

PMID: 39975130 PMC: 11838265. DOI: 10.1101/2025.01.29.635523.


Morphometric network-based abnormalities correlate with psychiatric comorbidities and gene expression in PCDH19-related developmental and epileptic encephalopathy.

Lenge M, Balestrini S, Napolitano A, Mei D, Conti V, Baldassarri G Transl Psychiatry. 2024; 14(1):35.

PMID: 38238304 PMC: 10796344. DOI: 10.1038/s41398-024-02753-x.


Neuronal network activity and connectivity are impaired in a conditional knockout mouse model with PCDH19 mosaic expression.

Giansante G, Mazzoleni S, Zippo A, Ponzoni L, Ghilardi A, Maiellano G Mol Psychiatry. 2023; 29(6):1710-1725.

PMID: 36997609 PMC: 11371655. DOI: 10.1038/s41380-023-02022-1.


Mosaic and non-mosaic protocadherin 19 mutation leads to neuronal hyperexcitability in zebrafish.

Robens B, Yang X, McGraw C, Turner L, Robens C, Thyme S Neurobiol Dis. 2022; 169:105738.

PMID: 35460869 PMC: 9284424. DOI: 10.1016/j.nbd.2022.105738.


δ-Protocadherins regulate neural progenitor cell division by antagonizing Ryk and Wnt/β-catenin signaling.

Biswas S, Emond M, Chenoweth K, Jontes J iScience. 2021; 24(8):102932.

PMID: 34430817 PMC: 8374482. DOI: 10.1016/j.isci.2021.102932.


References
1.
Jercog P, Rogerson T, Schnitzer M . Large-Scale Fluorescence Calcium-Imaging Methods for Studies of Long-Term Memory in Behaving Mammals. Cold Spring Harb Perspect Biol. 2016; 8(5). PMC: 4852807. DOI: 10.1101/cshperspect.a021824. View

2.
Orger M, de Polavieja G . Zebrafish Behavior: Opportunities and Challenges. Annu Rev Neurosci. 2017; 40:125-147. DOI: 10.1146/annurev-neuro-071714-033857. View

3.
Romano S, Pietri T, Perez-Schuster V, Jouary A, Haudrechy M, Sumbre G . Spontaneous neuronal network dynamics reveal circuit's functional adaptations for behavior. Neuron. 2015; 85(5):1070-85. PMC: 4353685. DOI: 10.1016/j.neuron.2015.01.027. View

4.
Biswas S, Emond M, Jontes J . Protocadherin-19 and N-cadherin interact to control cell movements during anterior neurulation. J Cell Biol. 2010; 191(5):1029-41. PMC: 2995167. DOI: 10.1083/jcb.201007008. View

5.
Yang W, Miller J, Carrillo-Reid L, Pnevmatikakis E, Paninski L, Yuste R . Simultaneous Multi-plane Imaging of Neural Circuits. Neuron. 2016; 89(2):269-84. PMC: 4724224. DOI: 10.1016/j.neuron.2015.12.012. View