» Articles » PMID: 31058225

Holographic Imaging of Electromagnetic Fields Via Electron-light Quantum Interference

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2019 May 7
PMID 31058225
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

Holography relies on the interference between a known reference and a signal of interest to reconstruct both the amplitude and the phase of that signal. With electrons, the extension of holography to the ultrafast time domain remains a challenge, although it would yield the highest possible combined spatiotemporal resolution. Here, we show that holograms of local electromagnetic fields can be obtained with combined attosecond/nanometer resolution in an ultrafast transmission electron microscope (UEM). Unlike conventional holography, where signal and reference are spatially separated and then recombined to interfere, our method relies on electromagnetic fields to split an electron wave function in a quantum coherent superposition of different energy states. In the image plane, spatial modulation of the electron energy distribution reflects the phase relation between reference and signal fields. Beyond imaging applications, this approach allows implementing quantum measurements in parallel, providing an efficient and versatile tool for electron quantum optics.

Citing Articles

Automated fast label-free quantification of cardiomyocyte dynamics with raw holograms for cardiotoxicity screening.

Moon I, Ahmadzadeh E, Kim Y, Rappaz B, Turcatti G Biomed Opt Express. 2025; 16(2):398-414.

PMID: 39958849 PMC: 11828440. DOI: 10.1364/BOE.542362.


Momentum space separation of quantum path interferences between photons and surface plasmon polaritons in nonlinear photoemission microscopy.

Dreher P, Janoschka D, Giessen H, Schutzhold R, Davis T, Horn-von Hoegen M Nanophotonics. 2024; 13(9):1593-1602.

PMID: 39678185 PMC: 11636401. DOI: 10.1515/nanoph-2023-0776.


Terahertz control and timing correlations in a transmission electron microscope.

Kuttruff J, Nabben D, Zimmermann A, Ryabov A, Baum P Sci Adv. 2024; 10(26):eadl6543.

PMID: 38924397 PMC: 11204200. DOI: 10.1126/sciadv.adl6543.


Free-electron Ramsey-type interferometry for enhanced amplitude and phase imaging of nearfields.

Bucher T, Ruimy R, Tsesses S, Dahan R, Bartal G, Vanacore G Sci Adv. 2023; 9(51):eadi5729.

PMID: 38134276 PMC: 10745688. DOI: 10.1126/sciadv.adi5729.


Numerical investigation of sequential phase-locked optical gating of free electrons.

Chahshouri F, Talebi N Sci Rep. 2023; 13(1):18949.

PMID: 37919329 PMC: 10622506. DOI: 10.1038/s41598-023-45992-6.


References
1.
Xu W, Jericho M, Meinertzhagen I, Kreuzer H . Digital in-line holography for biological applications. Proc Natl Acad Sci U S A. 2001; 98(20):11301-5. PMC: 58724. DOI: 10.1073/pnas.191361398. View

2.
Wollenhaupt M, Assion A, Liese D, Baumert T, Zamith S, Bouchene M . Interferences of ultrashort free electron wave packets. Phys Rev Lett. 2002; 89(17):173001. DOI: 10.1103/PhysRevLett.89.173001. View

3.
Eisebitt S, Luning J, Schlotter W, Lorgen M, Hellwig O, Eberhardt W . Lensless imaging of magnetic nanostructures by X-ray spectro-holography. Nature. 2004; 432(7019):885-8. DOI: 10.1038/nature03139. View

4.
Kubo A, Onda K, Petek H, Sun Z, Jung Y, Kim H . Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film. Nano Lett. 2005; 5(6):1123-7. DOI: 10.1021/nl0506655. View

5.
Javidi B, Nomura T . Securing information by use of digital holography. Opt Lett. 2007; 25(1):28-30. DOI: 10.1364/ol.25.000028. View