» Articles » PMID: 31053762

High Spatial Resolution Scintillator Dosimetry of Synchrotron Microbeams

Overview
Journal Sci Rep
Specialty Science
Date 2019 May 5
PMID 31053762
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Microbeam radiation therapy is a novel pre-clinical external beam therapy that uses high-brilliance synchrotron X-rays to deliver the necessary high dose rates. The unique conditions of high dose rate and high spatial fractionation demand a new class of detector to experimentally measure important beam quality parameters. Here we demonstrate the highest spatial resolution plastic scintillator fibre-optic dosimeter found in the literature to date and tested it on the Imaging and Medical Beam-Line at the Australian Synchrotron in a X-ray beam where the irradiation dose rate was 4435 Gy/s. With a one-dimensional spatial resolution of 10 μm the detector is able to resolve the individual microbeams (53.7 ± 0.4 μm wide), and measure the peak-to-valley dose ratio to be 55 ± 17. We also investigate the role of radioluminescence in the optical fibre used to transport the scintillation photons, and conclude that it creates a significant contribution to the total light detected.

Citing Articles

Microstrip plastic scintillating detector system for quality assurance in synchrotron microbeam radiotherapy.

Thevenet F, Keshmiri S, Degouttes J, Livingstone J, Lu G, Adam J Sci Rep. 2025; 15(1):277.

PMID: 39747355 PMC: 11696310. DOI: 10.1038/s41598-024-80736-0.


Grid/lattice therapy: consideration of small field dosimetry.

Das I, Khan A, Dogan S, Longo M Br J Radiol. 2024; 97(1158):1088-1098.

PMID: 38552328 PMC: 11135801. DOI: 10.1093/bjr/tqae060.


Ultra-high dose rate electron beams and the FLASH effect: From preclinical evidence to a new radiotherapy paradigm.

Schuler E, Acharya M, Montay-Gruel P, Loo Jr B, Vozenin M, Maxim P Med Phys. 2022; 49(3):2082-2095.

PMID: 34997969 PMC: 9032195. DOI: 10.1002/mp.15442.


Megavolt bremsstrahlung measurements from linear induction accelerators demonstrate possible use as a FLASH radiotherapy source to reduce acute toxicity.

Sampayan S, Sampayan K, Caporaso G, Chen Y, Falabella S, Hawkins S Sci Rep. 2021; 11(1):17104.

PMID: 34429440 PMC: 8385032. DOI: 10.1038/s41598-021-95807-9.


Investigating the Dosimetric Characteristics of Microbeam Radiation Treatment.

Zabihzadeh M, Rabiei A, Shahbazian H, Razmjoo S J Med Signals Sens. 2021; 11(1):45-51.

PMID: 34026590 PMC: 8043115. DOI: 10.4103/jmss.JMSS_12_19.


References
1.
Bouchet A, Lemasson B, Le Duc G, Maisin C, Brauer-Krisch E, Siegbahn E . Preferential effect of synchrotron microbeam radiation therapy on intracerebral 9L gliosarcoma vascular networks. Int J Radiat Oncol Biol Phys. 2010; 78(5):1503-12. DOI: 10.1016/j.ijrobp.2010.06.021. View

2.
Archer J, Li E, Petasecca M, Lerch M, Rosenfeld A, Carolan M . High-resolution fiber-optic dosimeters for microbeam radiation therapy. Med Phys. 2017; 44(5):1965-1968. DOI: 10.1002/mp.12209. View

3.
Stevenson A, Crosbie J, Hall C, Hausermann D, Livingstone J, Lye J . Quantitative characterization of the X-ray beam at the Australian Synchrotron Imaging and Medical Beamline (IMBL). J Synchrotron Radiat. 2016; 24(Pt 1):110-141. DOI: 10.1107/S1600577516015563. View

4.
Hadsell M, Zhang J, Laganis P, Sprenger F, Shan J, Zhang L . A first generation compact microbeam radiation therapy system based on carbon nanotube X-ray technology. Appl Phys Lett. 2013; 103(18):183505. PMC: 3829915. DOI: 10.1063/1.4826587. View

5.
Justus B, Falkenstein P, Huston A, Plazas M, Ning H, Miller R . Gated fiber-optic-coupled detector for in vivo real-time radiation dosimetry. Appl Opt. 2004; 43(8):1663-8. DOI: 10.1364/ao.43.001663. View