» Articles » PMID: 31042469

Loss of Nuclear TDP-43 Is Associated with Decondensation of LINE Retrotransposons

Overview
Journal Cell Rep
Publisher Cell Press
Date 2019 May 3
PMID 31042469
Citations 112
Authors
Affiliations
Soon will be listed here.
Abstract

Loss of the nuclear RNA binding protein TAR DNA binding protein-43 (TDP-43) into cytoplasmic aggregates is the strongest correlate to neurodegeneration in amyotrophic lateral sclerosis and frontotemporal degeneration. The molecular changes associated with the loss of nuclear TDP-43 in human tissues are not entirely known. Using subcellular fractionation and fluorescent-activated cell sorting to enrich for diseased neuronal nuclei without TDP-43 from post-mortem frontotemporal degeneration-amyotrophic lateral sclerosis (FTD-ALS) human brain, we characterized the effects of TDP-43 loss on the transcriptome and chromatin accessibility. Nuclear TDP-43 loss is associated with gene expression changes that affect RNA processing, nucleocytoplasmic transport, histone processing, and DNA damage. Loss of nuclear TDP-43 is also associated with chromatin decondensation around long interspersed nuclear elements (LINEs) and increased LINE1 DNA content. Moreover, loss of TDP-43 leads to increased retrotransposition that can be inhibited with antiretroviral drugs, suggesting that TDP-43 neuropathology is associated with altered chromatin structure including decondensation of LINEs.

Citing Articles

pTDP-43 levels correlate with cell type-specific molecular alterations in the prefrontal cortex of ALS/FTD patients.

Wang H, Xiang J, Yuan C, Veire A, Gendron T, Murray M Proc Natl Acad Sci U S A. 2025; 122(9):e2419818122.

PMID: 39999167 PMC: 11892677. DOI: 10.1073/pnas.2419818122.


TDP-43 Aggregate Seeding Impairs Autoregulation and Causes TDP-43 Dysfunction.

Mamede L, Hu M, Titus A, Vaquer-Alicea J, French R, Diamond M bioRxiv. 2025; .

PMID: 39990366 PMC: 11844547. DOI: 10.1101/2025.02.11.637743.


Disparate and shared transcriptomic signatures associated with cortical atrophy in genetic behavioral variant frontotemporal degeneration.

Shen T, Vogel J, Van Deerlin V, Suh E, Dratch L, Phillips J Mol Neurodegener. 2025; 20(1):17.

PMID: 39920674 PMC: 11806866. DOI: 10.1186/s13024-025-00806-3.


Whole blood transcriptome profile identifies motor neurone disease RNA biomarker signatures.

Koks S, Rallmann K, Muldmaa M, Price J, Pfaff A, Taba P Exp Biol Med (Maywood). 2025; 249():10401.

PMID: 39844875 PMC: 11750576. DOI: 10.3389/ebm.2024.10401.


TDP43 autoregulation gives rise to dominant negative isoforms that are tightly controlled by transcriptional and post-translational mechanisms.

Dykstra M, Weskamp K, Gomez N, Waksmacki J, Tank E, Glineburg M Cell Rep. 2025; 44(1):115113.

PMID: 39792557 PMC: 11848802. DOI: 10.1016/j.celrep.2024.115113.


References
1.
Evrony G, Lee E, Mehta B, Benjamini Y, Johnson R, Cai X . Cell lineage analysis in human brain using endogenous retroelements. Neuron. 2015; 85(1):49-59. PMC: 4299461. DOI: 10.1016/j.neuron.2014.12.028. View

2.
Ayala Y, De Conti L, Avendano-Vazquez S, Dhir A, Romano M, DAmbrogio A . TDP-43 regulates its mRNA levels through a negative feedback loop. EMBO J. 2010; 30(2):277-88. PMC: 3025456. DOI: 10.1038/emboj.2010.310. View

3.
Kirkwood T . Understanding the odd science of aging. Cell. 2005; 120(4):437-47. DOI: 10.1016/j.cell.2005.01.027. View

4.
Frost B, Hemberg M, Lewis J, Feany M . Tau promotes neurodegeneration through global chromatin relaxation. Nat Neurosci. 2014; 17(3):357-66. PMC: 4012297. DOI: 10.1038/nn.3639. View

5.
Freibaum B, Lu Y, Lopez-Gonzalez R, Kim N, Almeida S, Lee K . GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature. 2015; 525(7567):129-33. PMC: 4631399. DOI: 10.1038/nature14974. View