» Articles » PMID: 31041694

Myelin Oligodendrocyte Glycoprotein-IgG Contributes to Oligodendrocytopathy in the Presence of Complement, Distinct from Astrocytopathy Induced by AQP4-IgG

Overview
Journal Neurosci Bull
Specialty Neurology
Date 2019 May 2
PMID 31041694
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Immunoglobulin G against myelin oligodendrocyte glycoprotein (MOG-IgG) is detectable in neuromyelitis optica spectrum disorder (NMOSD) without aquaporin-4 IgG (AQP4-IgG), but its pathogenicity remains unclear. In this study, we explored the pathogenic mechanisms of MOG-IgG in vitro and in vivo and compared them with those of AQP4-IgG. MOG-IgG-positive serum induced complement activation and cell death in human embryonic kidney (HEK)-293T cells transfected with human MOG. In C57BL/6 mice and Sprague-Dawley rats, MOG-IgG only caused lesions in the presence of complement. Interestingly, AQP4-IgG induced astroglial damage, while MOG-IgG mainly caused myelin loss. MOG-IgG also induced astrocyte damage in mouse brains in the presence of complement. Importantly, we also observed ultrastructural changes induced by MOG-IgG and AQP4-IgG. These findings suggest that MOG-IgG directly mediates cell death by activating complement in vitro and producing NMOSD-like lesions in vivo. AQP4-IgG directly targets astrocytes, while MOG-IgG mainly damages oligodendrocytes.

Citing Articles

FLAMES overlaying anti-N-methyl-D-aspartate receptor encephalitis: a case report and literature review.

Zhong R, Chen X, Liao F, Lin Z, Zhang Z, Chen Y BMC Neurol. 2024; 24(1):140.

PMID: 38664672 PMC: 11044310. DOI: 10.1186/s12883-024-03617-z.


Evolution in anti-myelin oligodendrocyte glycoprotein antibody detection and its clinical significance: a narrative review.

Zhong X, Wang Y, Luo W, Ma X, Sun X, Jiang B Ann Transl Med. 2023; 11(7):287.

PMID: 37090054 PMC: 10116431. DOI: 10.21037/atm-20-4547.


Plasma Complement 3 and Complement 4 Are Promising Biomarkers for Distinguishing NMOSD From MOGAD and Are Associated With the Blood-Brain-Barrier Disruption in NMOSD.

Lin L, Wu Y, Hang H, Lu J, Ding Y Front Immunol. 2022; 13:853891.

PMID: 35898513 PMC: 9309329. DOI: 10.3389/fimmu.2022.853891.


Precision Medicine in Neurology: The Inspirational Paradigm of Complement Therapeutics.

Gavriilaki M, Kimiskidis V, Gavriilaki E Pharmaceuticals (Basel). 2020; 13(11).

PMID: 33114553 PMC: 7693884. DOI: 10.3390/ph13110341.


Treatment of MOG antibody associated disorders: results of an international survey.

Whittam D, Karthikeayan V, Gibbons E, Kneen R, Chandratre S, Ciccarelli O J Neurol. 2020; 267(12):3565-3577.

PMID: 32623595 PMC: 7954658. DOI: 10.1007/s00415-020-10026-y.


References
1.
Ratelade J, Verkman A . Inhibitor(s) of the classical complement pathway in mouse serum limit the utility of mice as experimental models of neuromyelitis optica. Mol Immunol. 2014; 62(1):104-13. PMC: 4306420. DOI: 10.1016/j.molimm.2014.06.003. View

2.
OConnor K, McLaughlin K, De Jager P, Chitnis T, Bettelli E, Xu C . Self-antigen tetramers discriminate between myelin autoantibodies to native or denatured protein. Nat Med. 2007; 13(2):211-7. PMC: 3429369. DOI: 10.1038/nm1488. View

3.
Zhou D, Srivastava R, Nessler S, Grummel V, Sommer N, Bruck W . Identification of a pathogenic antibody response to native myelin oligodendrocyte glycoprotein in multiple sclerosis. Proc Natl Acad Sci U S A. 2006; 103(50):19057-62. PMC: 1748176. DOI: 10.1073/pnas.0607242103. View

4.
Tradtrantip L, Yao X, Su T, Smith A, Verkman A . Bystander mechanism for complement-initiated early oligodendrocyte injury in neuromyelitis optica. Acta Neuropathol. 2017; 134(1):35-44. PMC: 5600280. DOI: 10.1007/s00401-017-1734-6. View

5.
Yan Y, Li Y, Fu Y, Yang L, Su L, Shi K . Autoantibody to MOG suggests two distinct clinical subtypes of NMOSD. Sci China Life Sci. 2016; 59(12):1270-1281. PMC: 5101174. DOI: 10.1007/s11427-015-4997-y. View