» Articles » PMID: 31031845

Nanotechnology in Metastatic Cancer Treatment: Current Achievements and Future Research Trends

Overview
Journal J Cancer
Specialty Oncology
Date 2019 Apr 30
PMID 31031845
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

The systemic spread of malignant cells from a primary site, a process termed metastasis represents a global challenge in cancer treatment. There is a real need to develop novel therapy strategies and nanomedicine may have remarkable and valuable contribution through specific and selective delivery of chemotherapeutic agents, through its intrinsic cytotoxic activity or through imaging applications, appealing also in the context of cancer personalized therapy. This review is focused on the applications of nanoparticles in the treatment of metastatic cancer, particularly on the possible effect on cell stabilization, growth inhibition, eventual interaction with adhesion molecules and antiangiogenic effect.

Citing Articles

Drug-Free Mesoporous Silica Nanoparticles Enable Suppression of Cancer Metastasis and Confer Survival Advantages to Mice with Tumor Xenografts.

Lee Y, Wu S, Wu C, Lin Y, Lin C, Chen Z ACS Appl Mater Interfaces. 2024; 16(45):61787-61804.

PMID: 39448366 PMC: 11565475. DOI: 10.1021/acsami.4c16609.


Inhalable Formulations to Treat Non-Small Cell Lung Cancer (NSCLC): Recent Therapies and Developments.

Gupta C, Jaipuria A, Gupta N Pharmaceutics. 2023; 15(1).

PMID: 36678768 PMC: 9861595. DOI: 10.3390/pharmaceutics15010139.


Chitosan-Coated-PLGA Nanoparticles Enhance the Antitumor and Antimigration Activity of Stattic - A STAT3 Dimerization Blocker.

Fong S, Foo Y, Saw W, Leo B, Teo Y, Chung I Int J Nanomedicine. 2022; 17:137-150.

PMID: 35046650 PMC: 8762521. DOI: 10.2147/IJN.S337093.


Pulmonary Delivery of Anticancer Drugs via Lipid-Based Nanocarriers for the Treatment of Lung Cancer: An Update.

Abdulbaqi I, Abou Assi R, Yaghmur A, Darwis Y, Mohtar N, Parumasivam T Pharmaceuticals (Basel). 2021; 14(8).

PMID: 34451824 PMC: 8400724. DOI: 10.3390/ph14080725.


Targeting cancer cell adhesion molecule, CD146, with low-dose gold nanorods and mild hyperthermia disrupts actin cytoskeleton and cancer cell migration.

Liu J, Kang L, Ratnayake I, Ahrenkiel P, Smith S, Wang C J Colloid Interface Sci. 2021; 601:556-569.

PMID: 34090032 PMC: 8349892. DOI: 10.1016/j.jcis.2021.05.144.


References
1.
Harada K, Shiota G, Kawasaki H . Transforming growth factor-alpha and epidermal growth factor receptor in chronic liver disease and hepatocellular carcinoma. Liver. 1999; 19(4):318-25. DOI: 10.1111/j.1478-3231.1999.tb00056.x. View

2.
Nabeshima K, Inoue T, Shimao Y, Kataoka H, Koono M . Cohort migration of carcinoma cells: differentiated colorectal carcinoma cells move as coherent cell clusters or sheets. Histol Histopathol. 1999; 14(4):1183-97. DOI: 10.14670/HH-14.1183. View

3.
Brandvold K, Neiman P, Ruddell A . Angiogenesis is an early event in the generation of myc-induced lymphomas. Oncogene. 2000; 19(23):2780-5. DOI: 10.1038/sj.onc.1203589. View

4.
Grande M, Franzen A, Karlsson J, Ericson L, Heldin N, Nilsson M . Transforming growth factor-beta and epidermal growth factor synergistically stimulate epithelial to mesenchymal transition (EMT) through a MEK-dependent mechanism in primary cultured pig thyrocytes. J Cell Sci. 2002; 115(Pt 22):4227-36. DOI: 10.1242/jcs.00091. View

5.
Jorissen R, Walker F, Pouliot N, Garrett T, Ward C, Burgess A . Epidermal growth factor receptor: mechanisms of activation and signalling. Exp Cell Res. 2003; 284(1):31-53. DOI: 10.1016/s0014-4827(02)00098-8. View