Nasr S, Skerswetat J, Gaier E, Malladi S, Kennedy B, Tootell R
J Neurosci. 2025; 45(6).
PMID: 39824636
PMC: 11800752.
DOI: 10.1523/JNEUROSCI.0745-24.2024.
Wong S, Hess R, Mullen K
J Vis. 2025; 25(1):6.
PMID: 39775723
PMC: 11724371.
DOI: 10.1167/jov.25.1.6.
Zhou Y, Yu W, Ye Q, Xu Z, He Y, Yao Y
Invest Ophthalmol Vis Sci. 2025; 66(1):14.
PMID: 39775696
PMC: 11717132.
DOI: 10.1167/iovs.66.1.14.
Clark A, Huynh A, Poletti M
J Neurosci. 2024; 44(48.
PMID: 39455258
PMC: 11604144.
DOI: 10.1523/JNEUROSCI.0594-24.2024.
Tanriverdi D, Al-Nosairy K, Hoffmann M, Cornelissen F
Transl Vis Sci Technol. 2024; 13(9):8.
PMID: 39235398
PMC: 11379081.
DOI: 10.1167/tvst.13.9.8.
Decreased scene-selective activity within the posterior intraparietal cortex in amblyopic adults.
Malladi S, Skerswetat J, Tootell R, Gaier E, Bex P, Hunter D
bioRxiv. 2024; .
PMID: 38895262
PMC: 11185631.
DOI: 10.1101/2024.06.05.597579.
Collective plasticity of binocular interactions in the adult visual system.
Wang M, McGraw P, Ledgeway T
Sci Rep. 2024; 14(1):10494.
PMID: 38714660
PMC: 11076462.
DOI: 10.1038/s41598-024-57276-8.
Rapid assessment of peripheral visual crowding.
Tanriverdi D, Cornelissen F
Front Neurosci. 2024; 18:1332701.
PMID: 38629049
PMC: 11019380.
DOI: 10.3389/fnins.2024.1332701.
Using high-resolution functional MRI to differentiate impacts of strabismic and anisometropic amblyopia on evoked ocular dominance activity in humans.
Nasr S, Skerswetat J, Gaier E, Malladi S, Kennedy B, Tootell R
bioRxiv. 2024; .
PMID: 38405701
PMC: 10888796.
DOI: 10.1101/2024.02.11.579855.
Brain mechanism of acupuncture for children with anisometropic amblyopia: a resting functional magnetic resonance imaging study based on voxel-mirrored homotopic connectivity.
Wang J, Jia J, Sun Y, Ma C, Chen Y, Liu A
Int J Ophthalmol. 2024; 17(2):339-347.
PMID: 38371252
PMC: 10827612.
DOI: 10.18240/ijo.2024.02.17.
Eye movements in visual impairment.
Verghese P, Nystrom M, Foulsham T, McGraw P
Vision Res. 2023; 211:108296.
PMID: 37506496
PMC: 10529007.
DOI: 10.1016/j.visres.2023.108296.
Decomposing the Response Time in Amblyopia: A Drift Diffusion Model Analysis.
Ruan X, Lin L, Ying X, Zhang H, Yuan J, Li C
Invest Ophthalmol Vis Sci. 2023; 64(7):25.
PMID: 37318443
PMC: 10278554.
DOI: 10.1167/iovs.64.7.25.
Stereoptic serious games as a visual rehabilitation tool for individuals with a residual amblyopia (AMBER trial): a protocol for a crossover randomized controlled trial.
Simon-Martinez C, Antoniou M, Bouthour W, Bavelier D, Levi D, Backus B
BMC Ophthalmol. 2023; 23(1):220.
PMID: 37198558
PMC: 10190050.
DOI: 10.1186/s12886-023-02944-y.
Eye movement characteristics in a mental rotation task presented in virtual reality.
Tang Z, Liu X, Huo H, Tang M, Qiao X, Chen D
Front Neurosci. 2023; 17:1143006.
PMID: 37051147
PMC: 10083294.
DOI: 10.3389/fnins.2023.1143006.
Amblyopia: progress and promise of functional magnetic resonance imaging.
Wang G, Liu L
Graefes Arch Clin Exp Ophthalmol. 2022; 261(5):1229-1246.
PMID: 36282454
DOI: 10.1007/s00417-022-05826-z.
Exogenous attention generalizes location transfer of perceptual learning in adults with amblyopia.
Roberts M, Carrasco M
iScience. 2022; 25(3):103839.
PMID: 35243224
PMC: 8857599.
DOI: 10.1016/j.isci.2022.103839.
Orienting of covert attention by neutral and emotional gaze cues appears to be unaffected by mild to moderate amblyopia.
Chow A, Quan Y, Chui C, Itier R, Thompson B
J Vis. 2021; 21(11):5.
PMID: 34623398
PMC: 8504194.
DOI: 10.1167/jov.21.11.5.
Rethinking amblyopia 2020.
Levi D
Vision Res. 2020; 176:118-129.
PMID: 32866759
PMC: 7487000.
DOI: 10.1016/j.visres.2020.07.014.
Attention in visually typical and amblyopic children.
Ramesh P, Steele M, Kiorpes L
J Vis. 2020; 20(3):11.
PMID: 32232378
PMC: 7405727.
DOI: 10.1167/jov.20.3.11.