» Articles » PMID: 31025934

NetPyNE, a Tool for Data-driven Multiscale Modeling of Brain Circuits

Abstract

Biophysical modeling of neuronal networks helps to integrate and interpret rapidly growing and disparate experimental datasets at multiple scales. The NetPyNE tool (www.netpyne.org) provides both programmatic and graphical interfaces to develop data-driven multiscale network models in NEURON. NetPyNE clearly separates model parameters from implementation code. Users provide specifications at a high level via a standardized declarative language, for example connectivity rules, to create millions of cell-to-cell connections. NetPyNE then enables users to generate the NEURON network, run efficiently parallelized simulations, optimize and explore network parameters through automated batch runs, and use built-in functions for visualization and analysis - connectivity matrices, voltage traces, spike raster plots, local field potentials, and information theoretic measures. NetPyNE also facilitates model sharing by exporting and importing standardized formats (NeuroML and SONATA). NetPyNE is already being used to teach computational neuroscience students and by modelers to investigate brain regions and phenomena.

Citing Articles

Self-organized and self-sustained ensemble activity patterns in simulation of mouse primary motor cortex.

Doherty D, Jung J, Dura-Bernal , Lytton W bioRxiv. 2025; .

PMID: 39868170 PMC: 11760730. DOI: 10.1101/2025.01.13.632866.


CBGTPy: An extensible cortico-basal ganglia-thalamic framework for modeling biological decision making.

Clapp M, Bahuguna J, Giossi C, Rubin J, Verstynen T, Vich C PLoS One. 2025; 20(1):e0310367.

PMID: 39808625 PMC: 11731724. DOI: 10.1371/journal.pone.0310367.


The NeuroML ecosystem for standardized multi-scale modeling in neuroscience.

Sinha A, Gleeson P, Marin B, Dura-Bernal S, Panagiotou S, Crook S Elife. 2025; 13.

PMID: 39792574 PMC: 11723582. DOI: 10.7554/eLife.95135.


Evaluation and comparison of methods for neuronal parameter optimization using the Neuroptimus software framework.

Mohacsi M, Torok M, Saray S, Tar L, Farkas G, Kali S PLoS Comput Biol. 2024; 20(12):e1012039.

PMID: 39715260 PMC: 11706405. DOI: 10.1371/journal.pcbi.1012039.


Modelling the effect of allopregnanolone on the resolution of spike-wave discharges.

Ahmed M, Campbell S J Comput Neurosci. 2024; 53(1):115-130.

PMID: 39708102 DOI: 10.1007/s10827-024-00887-x.


References
1.
Moles C, Mendes P, Banga J . Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res. 2003; 13(11):2467-74. PMC: 403766. DOI: 10.1101/gr.1262503. View

2.
Tejada J, Garcia-Cairasco N, Roque A . Combined role of seizure-induced dendritic morphology alterations and spine loss in newborn granule cells with mossy fiber sprouting on the hyperexcitability of a computer model of the dentate gyrus. PLoS Comput Biol. 2014; 10(5):e1003601. PMC: 4014389. DOI: 10.1371/journal.pcbi.1003601. View

3.
Hooks B, Mao T, Gutnisky D, Yamawaki N, Svoboda K, Shepherd G . Organization of cortical and thalamic input to pyramidal neurons in mouse motor cortex. J Neurosci. 2013; 33(2):748-60. PMC: 3710148. DOI: 10.1523/JNEUROSCI.4338-12.2013. View

4.
Gleeson P, Steuber V, Silver R . neuroConstruct: a tool for modeling networks of neurons in 3D space. Neuron. 2007; 54(2):219-35. PMC: 1885959. DOI: 10.1016/j.neuron.2007.03.025. View

5.
Knox A, Glauser T, Tenney J, Lytton W, Holland K . Modeling pathogenesis and treatment response in childhood absence epilepsy. Epilepsia. 2017; 59(1):135-145. PMC: 5776688. DOI: 10.1111/epi.13962. View