» Articles » PMID: 31004056

Expeditious, Scalable Solution Growth of Metal Oxide Films by Combustion Blade Coating for Flexible Electronics

Overview
Specialty Science
Date 2019 Apr 21
PMID 31004056
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Metal oxide (MO) semiconductor thin films prepared from solution typically require multiple hours of thermal annealing to achieve optimal lattice densification, efficient charge transport, and stable device operation, presenting a major barrier to roll-to-roll manufacturing. Here, we report a highly efficient, cofuel-assisted scalable combustion blade-coating (CBC) process for MO film growth, which involves introducing both a fluorinated fuel and a preannealing step to remove deleterious organic contaminants and promote complete combustion. Ultrafast reaction and metal-oxygen-metal (M-O-M) lattice condensation then occur within 10-60 s at 200-350 °C for representative MO semiconductor [indium oxide (InO), indium-zinc oxide (IZO), indium-gallium-zinc oxide (IGZO)] and dielectric [aluminum oxide (AlO)] films. Thus, wafer-scale CBC fabrication of IGZO-AlO thin-film transistors (TFTs) (60-s annealing) with field-effect mobilities as high as ∼25 cm V s and negligible threshold voltage deterioration in a demanding 4,000-s bias stress test are realized. Combined with polymer dielectrics, the CBC-derived IGZO TFTs on polyimide substrates exhibit high flexibility when bent to a 3-mm radius, with performance bending stability over 1,000 cycles.

Citing Articles

Solution-processable ordered defect compound semiconductors for high-performance electronics.

Wang H, An F, Wong C, Yin K, Liu J, Wang Y Sci Adv. 2024; 10(41):eadr8636.

PMID: 39383238 PMC: 11463277. DOI: 10.1126/sciadv.adr8636.


Role of the electronically-active amorphous state in low-temperature processed InO thin-film transistors.

Kirmani A, Roe E, Stafford C, Richter L Mater Adv. 2024; 1(2).

PMID: 38711924 PMC: 11070975. DOI: 10.1039/d0ma00072h.


Engineering Copper Iodide (CuI) for Multifunctional p-Type Transparent Semiconductors and Conductors.

Liu A, Zhu H, Kim M, Kim J, Noh Y Adv Sci (Weinh). 2021; 8(14):2100546.

PMID: 34306982 PMC: 8292905. DOI: 10.1002/advs.202100546.


Flexible and stretchable metal oxide nanofiber networks for multimodal and monolithically integrated wearable electronics.

Wang B, Thukral A, Xie Z, Liu L, Zhang X, Huang W Nat Commun. 2020; 11(1):2405.

PMID: 32415064 PMC: 7229221. DOI: 10.1038/s41467-020-16268-8.


Tailoring IGZO Composition for Enhanced Fully Solution-Based Thin Film Transistors.

Moreira M, Carlos E, Dias C, Deuermeier J, Pereira M, Barquinha P Nanomaterials (Basel). 2019; 9(9).

PMID: 31500167 PMC: 6781023. DOI: 10.3390/nano9091273.

References
1.
Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H . Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature. 2004; 432(7016):488-92. DOI: 10.1038/nature03090. View

2.
Arias A, MacKenzie J, McCulloch I, Rivnay J, Salleo A . Materials and applications for large area electronics: solution-based approaches. Chem Rev. 2010; 110(1):3-24. DOI: 10.1021/cr900150b. View

3.
Klauk H . Organic thin-film transistors. Chem Soc Rev. 2010; 39(7):2643-66. DOI: 10.1039/b909902f. View

4.
Banger K, Yamashita Y, Mori K, Peterson R, Leedham T, Rickard J . Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol–gel on chip’ process. Nat Mater. 2010; 10(1):45-50. DOI: 10.1038/nmat2914. View

5.
Park Y, Daniel J, Heeney M, Salleo A . Room-temperature fabrication of ultrathin oxide gate dielectrics for low-voltage operation of organic field-effect transistors. Adv Mater. 2011; 23(8):971-4. DOI: 10.1002/adma.201003641. View