» Articles » PMID: 31001364

Thermoelectric Materials and Applications for Energy Harvesting Power Generation

Overview
Date 2019 Apr 20
PMID 31001364
Citations 44
Authors
Affiliations
Soon will be listed here.
Abstract

Thermoelectrics, in particular solid-state conversion of heat to electricity, is expected to be a key energy harvesting technology to power ubiquitous sensors and wearable devices in the future. A comprehensive review is given on the principles and advances in the development of thermoelectric materials suitable for energy harvesting power generation, ranging from organic and hybrid organic-inorganic to inorganic materials. Examples of design and applications are also presented.

Citing Articles

Flexible thermoelectric generators from spray-printed PEDOT:PSS/BiSbTe composites.

Masoumi S, Xiong R, Caffrey E, Gatensby R, Ilhan C, Coleman J RSC Adv. 2025; 15(9):6574-6584.

PMID: 40017646 PMC: 11865908. DOI: 10.1039/d4ra08450k.


Output Characteristics of Carbon Nanotube Thermoelectric Generator with Slitted Kirigami Structure.

Terashima S, Iwasa Y, Tanaka N, Fujigaya T, Iwase E Materials (Basel). 2025; 18(3).

PMID: 39942322 PMC: 11819729. DOI: 10.3390/ma18030656.


Self-optimized contact in air-robust thermoelectric junction towards long-lasting heat harvesting.

Li A, Wang L, Li J, Wu X, Mori T Nat Commun. 2025; 16(1):1502.

PMID: 39929824 PMC: 11811127. DOI: 10.1038/s41467-025-56861-3.


Spectral Emissivity and Thermal Conductivity Properties of Black Aluminum Films.

More-Chevalier J, Martan J, Repan T, Duprey S, Hruska P, Novotny M Langmuir. 2025; 41(6):3832-3842.

PMID: 39743727 PMC: 11841031. DOI: 10.1021/acs.langmuir.4c03838.


Systematic investigation of structural, magneto-electronic, mechanical, thermophysical, optical and thermoelectric properties of HfVZ (Z = Ga, In, Tl) inverse Heusler alloy for spintronics applications.

Sharma S, Gupta D Sci Rep. 2024; 14(1):28542.

PMID: 39557889 PMC: 11574311. DOI: 10.1038/s41598-024-72305-2.


References
1.
Li H, DeCoster M, Ireland R, Song J, Hopkins P, Katz H . Modification of the Poly(bisdodecylquaterthiophene) Structure for High and Predominantly Nonionic Conductivity with Matched Dopants. J Am Chem Soc. 2017; 139(32):11149-11157. DOI: 10.1021/jacs.7b05300. View

2.
Snyder G, Toberer E . Complex thermoelectric materials. Nat Mater. 2008; 7(2):105-14. DOI: 10.1038/nmat2090. View

3.
Dong X, Xiong S, Luo B, Ge R, Li Z, Li J . Flexible and Transparent Organic-Inorganic Hybrid Thermoelectric Modules. ACS Appl Mater Interfaces. 2018; 10(31):26687-26693. DOI: 10.1021/acsami.8b08696. View

4.
Satoh N, Otsuka M, Ohki T, Ohi A, Sakurai Y, Yamashita Y . Organic π-type thermoelectric module supported by photolithographic mold: a working hypothesis of sticky thermoelectric materials. Sci Technol Adv Mater. 2018; 19(1):517-525. PMC: 6052422. DOI: 10.1080/14686996.2018.1487239. View

5.
Bubnova O, Berggren M, Crispin X . Tuning the thermoelectric properties of conducting polymers in an electrochemical transistor. J Am Chem Soc. 2012; 134(40):16456-9. DOI: 10.1021/ja305188r. View