» Articles » PMID: 31000750

Life-stage Specific Transcriptomes of a Migratory Endoparasitic Plant Nematode, Radopholus Similis Elucidate a Different Parasitic and Life Strategy of Plant Parasitic Nematodes

Overview
Journal Sci Rep
Specialty Science
Date 2019 Apr 20
PMID 31000750
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Radopholus similis is an important migratory endoparasitic nematode, severely harms banana, citrus and many other commercial crops. Little is known about the molecular mechanism of infection and pathogenesis of R. similis. In this study, 64761 unigenes were generated from eggs, juveniles, females and males of R. similis. 11443 unigenes showed significant expression difference among these four life stages. Genes involved in host parasitism, anti-host defense and other biological processes were predicted. There were 86 and 102 putative genes coding for cell wall degrading enzymes and antioxidase respectively. The amount and type of putative parasitic-related genes reported in sedentary endoparasitic plant nematodes are variable from those of migratory parasitic nematodes on plant aerial portion. There were no sequences annotated to effectors in R. similis, involved in feeding site formation of sedentary endoparasites nematodes. This transcriptome data provides a new insight into the parasitic and pathogenic molecular mechanisms of the migratory endoparasitic nematodes. It also provides a broad idea for further research on R. similis.

Citing Articles

Advances in Migratory Plant Endoparasitic Nematode Effectors.

Lu Y, Yang S, Chen W, Xie H, Xu C Int J Mol Sci. 2024; 25(12).

PMID: 38928141 PMC: 11203926. DOI: 10.3390/ijms25126435.


Pectate lyase genes from Radopholus similis and their application in pathotype identification.

Yang S, Yang S, Li Q, Lu Y, Huang X, Chen C Appl Microbiol Biotechnol. 2024; 108(1):298.

PMID: 38607493 PMC: 11009743. DOI: 10.1007/s00253-024-13124-3.


Transcriptome Analysis of and the Role of a C-Type Lectin in Parasitism.

Chi W, Hu L, Li Z, Lin B, Zhuo K, Liao J Plants (Basel). 2024; 13(5).

PMID: 38475576 PMC: 10935113. DOI: 10.3390/plants13050730.


Targeted transcriptomics reveals signatures of large-scale independent origins and concerted regulation of effector genes in Radopholus similis.

Vieira P, Myers R, Pellegrin C, Wram C, Hesse C, Maier T PLoS Pathog. 2021; 17(11):e1010036.

PMID: 34748609 PMC: 8601627. DOI: 10.1371/journal.ppat.1010036.


On the role of dauer in the adaptation of nematodes to a parasitic lifestyle.

Vlaar L, Bertran A, Rahimi M, Dong L, Kammenga J, Helder J Parasit Vectors. 2021; 14(1):554.

PMID: 34706780 PMC: 8555053. DOI: 10.1186/s13071-021-04953-6.


References
1.
Danchin E, Rosso M, Vieira P, de Almeida-Engler J, Coutinho P, Henrissat B . Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes. Proc Natl Acad Sci U S A. 2010; 107(41):17651-6. PMC: 2955110. DOI: 10.1073/pnas.1008486107. View

2.
Souza D, Antonino de Souza Jr J, Grossi-de-Sa M, Lima Rocha T, da Rocha Fragoso R, Barbosa A . Ectopic expression of a Meloidogyne incognita dorsal gland protein in tobacco accelerates the formation of the nematode feeding site. Plant Sci. 2011; 180(2):276-82. DOI: 10.1016/j.plantsci.2010.09.003. View

3.
Abad P, Gouzy J, Aury J, Castagnone-Sereno P, Danchin E, Deleury E . Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotechnol. 2008; 26(8):909-15. DOI: 10.1038/nbt.1482. View

4.
Kumar M, Gantasala N, Roychowdhury T, Thakur P, Banakar P, Shukla R . De novo transcriptome sequencing and analysis of the cereal cyst nematode, Heterodera avenae. PLoS One. 2014; 9(5):e96311. PMC: 4011697. DOI: 10.1371/journal.pone.0096311. View

5.
Kampkotter A . Antioxidant enzyme families in parasitic nematodes. Mol Biochem Parasitol. 2001; 114(2):129-42. DOI: 10.1016/s0166-6851(01)00252-3. View