» Articles » PMID: 30997531

Transcriptional Silencing of Centromere Repeats by Heterochromatin Safeguards Chromosome Integrity

Overview
Journal Curr Genet
Specialty Genetics
Date 2019 Apr 19
PMID 30997531
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

The centromere region of chromosomes consists of repetitive DNA sequences, and is, therefore, one of the fragile sites of chromosomes in many eukaryotes. In the core region, the histone H3 variant CENP-A forms centromere-specific nucleosomes that are required for kinetochore formation. In the pericentromeric region, histone H3 is methylated at lysine 9 (H3K9) and heterochromatin is formed. The transcription of pericentromeric repeats by RNA polymerase II is strictly repressed by heterochromatin. However, the role of the transcriptional silencing of the pericentromeric repeats remains largely unclear. Here, we focus on the chromosomal rearrangements that occur at the repetitive centromeres, and highlight our recent studies showing that transcriptional silencing by heterochromatin suppresses gross chromosomal rearrangements (GCRs) at centromeres in fission yeast. Inactivation of the Clr4 methyltransferase, which is essential for the H3K9 methylation, increased GCRs with breakpoints located in centromeric repeats. However, mutations in RNA polymerase II or the transcription factor Tfs1/TFIIS, which promotes restart of RNA polymerase II following its backtracking, reduced the GCRs that occur in the absence of Clr4, demonstrating that heterochromatin suppresses GCRs by repressing the Tfs1-dependent transcription. We also discuss how the transcriptional restart gives rise to chromosomal rearrangements at centromeres.

Citing Articles

Chromodomain mutation in S. pombe Kat5/Mst1 affects centromere dynamics and DNA repair.

Li T, Petreaca R, Forsburg S PLoS One. 2024; 19(4):e0300732.

PMID: 38662722 PMC: 11045136. DOI: 10.1371/journal.pone.0300732.


Gross Chromosomal Rearrangement at Centromeres.

Xu R, Pan Z, Nakagawa T Biomolecules. 2024; 14(1).

PMID: 38254628 PMC: 10813616. DOI: 10.3390/biom14010028.


Fission yeast Srr1 and Skb1 promote isochromosome formation at the centromere.

Mongia P, Toyofuku N, Pan Z, Xu R, Kinoshita Y, Oki K Commun Biol. 2023; 6(1):551.

PMID: 37237082 PMC: 10219947. DOI: 10.1038/s42003-023-04925-9.


Tfs1, transcription elongation factor TFIIS, has an impact on chromosome segregation affected by pka1 deletion in Schizosaccharomyces pombe.

Takenaka K, Nishioka S, Nishida Y, Kawamukai M, Matsuo Y Curr Genet. 2023; 69(2-3):115-125.

PMID: 37052630 DOI: 10.1007/s00294-023-01268-0.


Human Satellite 1A analysis provides evidence of pericentromeric transcription.

Lopes M, Louzada S, Ferreira D, Verissimo G, Eleuterio D, Gama-Carvalho M BMC Biol. 2023; 21(1):28.

PMID: 36755311 PMC: 9909926. DOI: 10.1186/s12915-023-01521-5.


References
1.
Hansen R, Wijmenga C, Luo P, Stanek A, Canfield T, Weemaes C . The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc Natl Acad Sci U S A. 1999; 96(25):14412-7. PMC: 24450. DOI: 10.1073/pnas.96.25.14412. View

2.
Rea S, Eisenhaber F, OCarroll D, Strahl B, Sun Z, Schmid M . Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature. 2000; 406(6796):593-9. DOI: 10.1038/35020506. View

3.
Lachner M, OCarroll D, Rea S, Mechtler K, Jenuwein T . Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature. 2001; 410(6824):116-20. DOI: 10.1038/35065132. View

4.
Bannister A, Zegerman P, Partridge J, Miska E, Thomas J, Allshire R . Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature. 2001; 410(6824):120-4. DOI: 10.1038/35065138. View

5.
Nakayama J, Rice J, Strahl B, Allis C, Grewal S . Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science. 2001; 292(5514):110-3. DOI: 10.1126/science.1060118. View