» Articles » PMID: 30996879

The Fate of Bromine After Temperature-induced Dehydrogenation of On-surface Synthesized Bisheptahelicene

Overview
Journal Chem Sci
Specialty Chemistry
Date 2019 Apr 19
PMID 30996879
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

The on-surface synthesis of bisheptahelicene by Ullmann coupling of 9-bromoheptahelicene on Au(111) and its temperature-induced dehydrogenation is studied using temperature-programmed reaction spectroscopy and time-of-flight secondary ion mass spectrometry. Specific dehydrogenation products of bisheptahelicene after loss of 6, 8 and 10 hydrogen atoms are identified, corresponding to molecules having undergone Diels-Alder transformations and intramolecular C-C coupling reactions. By combining with atomic hydrogen produced by dehydrogenation, the Ullmann coupling side-product bromine desorbs as HBr. H desorption emerges only after all Br has desorbed. Such characteristic behavior is explained by a kinetic model which explicitly considers the coverage of transient atomic H on the surface. Heating experiments performed with saturated layers of different Br-containing molecules reveal that the onset of HBr desorption depends strictly on the dehydrogenation step and therefore on the structure of the molecules.

Citing Articles

Cyclodehydrogenation of molecular nanographene precursors catalyzed by atomic hydrogen.

Zuzak R, Dabczynski P, Castro-Esteban J, Martinez J, Engelund M, Perez D Nat Commun. 2025; 16(1):691.

PMID: 39814730 PMC: 11735845. DOI: 10.1038/s41467-024-54774-1.


On-Surface Synthesis and Evolution of Self-Assembled Poly(-phenylene) Chains on Ag(111): A Joint Experimental and Theoretical Study.

Ivanovskaya V, Zobelli A, Basagni A, Casalini S, Colazzo L, De Boni F J Phys Chem C Nanomater Interfaces. 2023; 127(1):393-402.

PMID: 36660099 PMC: 9841565. DOI: 10.1021/acs.jpcc.2c06926.


Stereospecific on-Surface Cyclodehydrogenation of Bishelicenes: Preservation of Handedness from Helical to Planar Chirality.

Irziqat B, Cebrat A, Baljozovic M, Martin K, Parschau M, Avarvari N Chemistry. 2021; 27(54):13523-13526.

PMID: 34387926 PMC: 8518606. DOI: 10.1002/chem.202102069.


Atomically precise graphene nanoribbons: interplay of structural and electronic properties.

Houtsma R, de la Rie J, Stohr M Chem Soc Rev. 2021; 50(11):6541-6568.

PMID: 34100034 PMC: 8185524. DOI: 10.1039/d0cs01541e.


Transferring axial molecular chirality through a sequence of on-surface reactions.

Merino-Diez N, Mohammed M, Castro-Esteban J, Colazzo L, Berdonces-Layunta A, Lawrence J Chem Sci. 2021; 11(21):5441-5446.

PMID: 34094071 PMC: 8159356. DOI: 10.1039/d0sc01653e.


References
1.
Grill L, Dyer M, Lafferentz L, Persson M, Peters M, Hecht S . Nano-architectures by covalent assembly of molecular building blocks. Nat Nanotechnol. 2008; 2(11):687-91. DOI: 10.1038/nnano.2007.346. View

2.
Otero G, Biddau G, Sanchez-Sanchez C, Caillard R, Lopez M, Rogero C . Fullerenes from aromatic precursors by surface-catalysed cyclodehydrogenation. Nature. 2008; 454(7206):865-8. DOI: 10.1038/nature07193. View

3.
Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S . Atomically precise bottom-up fabrication of graphene nanoribbons. Nature. 2010; 466(7305):470-3. DOI: 10.1038/nature09211. View

4.
Bieri M, Nguyen M, Groning O, Cai J, Treier M, Ait-Mansour K . Two-dimensional polymer formation on surfaces: insight into the roles of precursor mobility and reactivity. J Am Chem Soc. 2010; 132(46):16669-76. DOI: 10.1021/ja107947z. View

5.
Treier M, Pignedoli C, Laino T, Rieger R, Mullen K, Passerone D . Surface-assisted cyclodehydrogenation provides a synthetic route towards easily processable and chemically tailored nanographenes. Nat Chem. 2010; 3(1):61-7. DOI: 10.1038/nchem.891. View