Sayed S, Petersen B, Reigstad M, Schwennicke A, Hausken J, Storeng R
PLoS One. 2025; 20(2):e0318480.
PMID: 39999051
PMC: 11856505.
DOI: 10.1371/journal.pone.0318480.
Miyagi Y, Habara T, Hirata R, Hayashi N
Reprod Med Biol. 2024; 23(1):e12612.
PMID: 39351129
PMC: 11442056.
DOI: 10.1002/rmb2.12612.
Kashutina M, Obosyan L, Bunyaeva E, Zhernov Y, Kirillova A
J Assist Reprod Genet. 2024; 41(11):3079-3088.
PMID: 39349891
PMC: 11621277.
DOI: 10.1007/s10815-024-03234-2.
Illingworth P, Venetis C, Gardner D, Nelson S, Berntsen J, Larman M
Nat Med. 2024; 30(11):3114-3120.
PMID: 39122964
PMC: 11564097.
DOI: 10.1038/s41591-024-03166-5.
Sibanda K, Ndayizigamiye P, Twinomurinzi H
JMIR Pediatr Parent. 2024; 7:e47848.
PMID: 39116433
PMC: 11342010.
DOI: 10.2196/47848.
A generalized AI system for human embryo selection covering the entire IVF cycle via multi-modal contrastive learning.
Wang G, Wang K, Gao Y, Chen L, Gao T, Ma Y
Patterns (N Y). 2024; 5(7):100985.
PMID: 39081572
PMC: 11284500.
DOI: 10.1016/j.patter.2024.100985.
Artificial intelligence system for outcome evaluations of human in vitro fertilization-derived embryos.
Sun L, Li J, Zeng S, Luo Q, Miao H, Liang Y
Chin Med J (Engl). 2024; 137(16):1939-1949.
PMID: 38997251
PMC: 11332789.
DOI: 10.1097/CM9.0000000000003162.
Improved prediction of clinical pregnancy using artificial intelligence with enhanced inner cell mass and trophectoderm images.
Kim H, Ko T, Kang H, Choi S, Park J, Chung M
Sci Rep. 2024; 14(1):3240.
PMID: 38331914
PMC: 10853203.
DOI: 10.1038/s41598-024-52241-x.
Associations between the artificial intelligence scoring system and live birth outcomes in preimplantation genetic testing for aneuploidy cycles.
Lee C, Huang C, Lee T, Chen H, Cheng E, Lin P
Reprod Biol Endocrinol. 2024; 22(1):12.
PMID: 38233926
PMC: 10792866.
DOI: 10.1186/s12958-024-01185-y.
Criteria for implementing artificial intelligence systems in reproductive medicine.
Guell E
Clin Exp Reprod Med. 2023; 51(1):1-12.
PMID: 38035589
PMC: 10914497.
DOI: 10.5653/cerm.2023.06009.
Comparing performance between clinics of an embryo evaluation algorithm based on time-lapse images and machine learning.
Johansen M, Parner E, Kragh M, Kato K, Ueno S, Palm S
J Assist Reprod Genet. 2023; 40(9):2129-2137.
PMID: 37423932
PMC: 10440335.
DOI: 10.1007/s10815-023-02871-3.
Development and validation of deep learning based embryo selection across multiple days of transfer.
Theilgaard Lassen J, Kragh M, Rimestad J, Johansen M, Berntsen J
Sci Rep. 2023; 13(1):4235.
PMID: 36918648
PMC: 10015019.
DOI: 10.1038/s41598-023-31136-3.
Correlation between an annotation-free embryo scoring system based on deep learning and live birth/neonatal outcomes after single vitrified-warmed blastocyst transfer: a single-centre, large-cohort retrospective study.
Ueno S, Berntsen J, Ito M, Okimura T, Kato K
J Assist Reprod Genet. 2022; 39(9):2089-2099.
PMID: 35881272
PMC: 9475010.
DOI: 10.1007/s10815-022-02562-5.
Reporting on the Value of Artificial Intelligence in Predicting the Optimal Embryo for Transfer: A Systematic Review including Data Synthesis.
Sfakianoudis K, Maziotis E, Grigoriadis S, Pantou A, Kokkini G, Trypidi A
Biomedicines. 2022; 10(3).
PMID: 35327499
PMC: 8945147.
DOI: 10.3390/biomedicines10030697.
Embryo selection with artificial intelligence: how to evaluate and compare methods?.
Kragh M, Karstoft H
J Assist Reprod Genet. 2021; 38(7):1675-1689.
PMID: 34173914
PMC: 8324599.
DOI: 10.1007/s10815-021-02254-6.
Development of deep learning algorithms for predicting blastocyst formation and quality by time-lapse monitoring.
Liao Q, Zhang Q, Feng X, Huang H, Xu H, Tian B
Commun Biol. 2021; 4(1):415.
PMID: 33772211
PMC: 7998018.
DOI: 10.1038/s42003-021-01937-1.
Artificial intelligence in the IVF laboratory: overview through the application of different types of algorithms for the classification of reproductive data.
Fernandez E, Ferreira A, Cecilio M, Spinosa Cheles D, de Souza R, Gouveia Nogueira M
J Assist Reprod Genet. 2020; 37(10):2359-2376.
PMID: 32654105
PMC: 7550511.
DOI: 10.1007/s10815-020-01881-9.
Mining of variables from embryo morphokinetics, blastocyst's morphology and patient parameters: an approach to predict the live birth in the assisted reproduction service.
Spinosa Cheles D, Molin E, Rocha J, Gouveia Nogueira M
JBRA Assist Reprod. 2020; 24(4):470-479.
PMID: 32293823
PMC: 7558892.
DOI: 10.5935/1518-0557.20200014.
Application of deep learning to the classification of uterine cervical squamous epithelial lesion from colposcopy images combined with HPV types.
Miyagi Y, Takehara K, Nagayasu Y, Miyake T
Oncol Lett. 2020; 19(2):1602-1610.
PMID: 31966086
PMC: 6956417.
DOI: 10.3892/ol.2019.11214.
Application of deep learning to the classification of uterine cervical squamous epithelial lesion from colposcopy images.
Miyagi Y, Takehara K, Miyake T
Mol Clin Oncol. 2019; 11(6):583-589.
PMID: 31692958
PMC: 6826263.
DOI: 10.3892/mco.2019.1932.