» Articles » PMID: 30995741

Upper Critical Solution Temperature (UCST) Behavior of Coacervate of Cationic Protamine and Multivalent Anions

Overview
Publisher MDPI
Date 2019 Apr 19
PMID 30995741
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Complex coacervation is an emerging liquid/liquid phase separation (LLPS) phenomenon that behaves as a membrane-less organelle in living cells. Yet while one of the critical factors for complex coacervation is temperature, little analysis and research has been devoted to the temperature effect on complex coacervation. Here, we performed a complex coacervation of cationic protamine and multivalent anions (citrate and tripolyphosphate (TPP)). Both mixtures (i.e., protamine/citrate and protamine/TPP) underwent coacervation in an aqueous solution, while a mixture of protamine and sodium chloride did not. Interestingly, the complex coacervation of protamine and multivalent anions showed upper critical solution temperature (UCST) behavior, and the coacervation of protamine and multivalent anions was reversible with solution temperature changes. The large asymmetry in molecular weight between positively charged protamine (~4 kDa) and the multivalent anions (<0.4 kDa) and strong electrostatic interactions between positively charged guanidine residues in protamine and multivalent anions were likely to contribute to UCST behavior in this coacervation system.

Citing Articles

Liquid-liquid separation in gut immunity.

Wang Z, Zhou L, Zhong X, Jiang Y, Zhang Z, Li W Front Immunol. 2024; 15:1505123.

PMID: 39720729 PMC: 11666445. DOI: 10.3389/fimmu.2024.1505123.


Reversible and size-controlled assembly of reflectin proteins using a charged azobenzene photoswitch.

Tobin C, Gordon R, Tochikura S, Chmelka B, Morse D, Read de Alaniz J Chem Sci. 2024; 15(33):13279-13289.

PMID: 39183923 PMC: 11339800. DOI: 10.1039/d4sc03299c.


Solid-Liquid-Solution Phases in Poly(diallyldimethylammonium)/Poly(acrylic acid) Polyelectrolyte Complexes at Varying Temperatures.

Eneh C, Nixon K, Manoj Lalwani S, Sammalkorpi M, Batys P, Lutkenhaus J Macromolecules. 2024; 57(5):2363-2375.

PMID: 38495383 PMC: 10938883. DOI: 10.1021/acs.macromol.4c00258.


Using Implicit-Solvent Potentials to Extract Water Contributions to Enthalpy-Entropy Compensation in Biomolecular Associations.

Chen S, Wang Z J Phys Chem B. 2023; 127(30):6825-6832.

PMID: 37491824 PMC: 10405215. DOI: 10.1021/acs.jpcb.3c03799.


In Vitro Transcription-Translation in an Artificial Biomolecular Condensate.

Schoenmakers L, Yewdall N, Lu T, Andre A, Nelissen F, Spruijt E ACS Synth Biol. 2023; 12(7):2004-2014.

PMID: 37343188 PMC: 10393115. DOI: 10.1021/acssynbio.3c00069.


References
1.
Nuhn H, Klok H . Secondary structure formation and LCST behavior of short elastin-like peptides. Biomacromolecules. 2008; 9(10):2755-63. DOI: 10.1021/bm800784y. View

2.
Elbaum-Garfinkle S, Kim Y, Szczepaniak K, Chen C, Eckmann C, Myong S . The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc Natl Acad Sci U S A. 2015; 112(23):7189-94. PMC: 4466716. DOI: 10.1073/pnas.1504822112. View

3.
Perry S, Leon L, Hoffmann K, Kade M, Priftis D, Black K . Chirality-selected phase behaviour in ionic polypeptide complexes. Nat Commun. 2015; 6:6052. PMC: 4309419. DOI: 10.1038/ncomms7052. View

4.
Vrhovski B, Jensen S, Weiss A . Coacervation characteristics of recombinant human tropoelastin. Eur J Biochem. 1998; 250(1):92-8. DOI: 10.1111/j.1432-1033.1997.00092.x. View

5.
Lim S, Moon D, Kim H, Seo J, Kang I, Cha H . Interfacial tension of complex coacervated mussel adhesive protein according to the Hofmeister series. Langmuir. 2014; 30(4):1108-15. DOI: 10.1021/la403680z. View