Response: Projection of Diabetes Prevalence in Korean Adults for the Year 2030 Using Risk Factors Identified from National Data (Diabetes Metab J 2019;43:90-6)
Overview
Overview
Authors
Authors
Affiliations
Affiliations
Soon will be listed here.
Citing Articles
Machine Learning Based Diabetes Classification and Prediction for Healthcare Applications.
Butt U, Letchmunan S, Ali M, Hassan F, Baqir A, Sherazi H J Healthc Eng. 2021; 2021:9930985.
PMID: 34631003 PMC: 8500744. DOI: 10.1155/2021/9930985.
References
1.
Whiting D, Guariguata L, Weil C, Shaw J
. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011; 94(3):311-21.
DOI: 10.1016/j.diabres.2011.10.029.
View
2.
Guariguata L, Whiting D, Weil C, Unwin N
. The International Diabetes Federation diabetes atlas methodology for estimating global and national prevalence of diabetes in adults. Diabetes Res Clin Pract. 2011; 94(3):322-32.
DOI: 10.1016/j.diabres.2011.10.040.
View
3.
Rowley W, Bezold C, Arikan Y, Byrne E, Krohe S
. Diabetes 2030: Insights from Yesterday, Today, and Future Trends. Popul Health Manag. 2016; 20(1):6-12.
PMC: 5278808.
DOI: 10.1089/pop.2015.0181.
View
4.
Baik I
. Projection of Diabetes Prevalence in Korean Adults for the Year 2030 Using Risk Factors Identified from National Data. Diabetes Metab J. 2018; 43(1):90-96.
PMC: 6387874.
DOI: 10.4093/dmj.2018.0043.
View