» Articles » PMID: 30993941

Response: Projection of Diabetes Prevalence in Korean Adults for the Year 2030 Using Risk Factors Identified from National Data (Diabetes Metab J 2019;43:90-6)

Overview
Specialty Endocrinology
Date 2019 Apr 18
PMID 30993941
Citations 1
Authors
Affiliations
Soon will be listed here.
Citing Articles

Machine Learning Based Diabetes Classification and Prediction for Healthcare Applications.

Butt U, Letchmunan S, Ali M, Hassan F, Baqir A, Sherazi H J Healthc Eng. 2021; 2021:9930985.

PMID: 34631003 PMC: 8500744. DOI: 10.1155/2021/9930985.

References
1.
Whiting D, Guariguata L, Weil C, Shaw J . IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011; 94(3):311-21. DOI: 10.1016/j.diabres.2011.10.029. View

2.
Guariguata L, Whiting D, Weil C, Unwin N . The International Diabetes Federation diabetes atlas methodology for estimating global and national prevalence of diabetes in adults. Diabetes Res Clin Pract. 2011; 94(3):322-32. DOI: 10.1016/j.diabres.2011.10.040. View

3.
Rowley W, Bezold C, Arikan Y, Byrne E, Krohe S . Diabetes 2030: Insights from Yesterday, Today, and Future Trends. Popul Health Manag. 2016; 20(1):6-12. PMC: 5278808. DOI: 10.1089/pop.2015.0181. View

4.
Baik I . Projection of Diabetes Prevalence in Korean Adults for the Year 2030 Using Risk Factors Identified from National Data. Diabetes Metab J. 2018; 43(1):90-96. PMC: 6387874. DOI: 10.4093/dmj.2018.0043. View