Longitudinal Prediction of Infant Diffusion MRI Data Via Graph Convolutional Adversarial Networks
Overview
Affiliations
Missing data is a common problem in longitudinal studies due to subject dropouts and failed scans. We present a graph-based convolutional neural network to predict missing diffusion MRI data. In particular, we consider the relationships between sampling points in the spatial domain and the diffusion wave-vector domain to construct a graph. We then use a graph convolutional network to learn the non-linear mapping from available data to missing data. Our method harnesses a multi-scale residual architecture with adversarial learning for prediction with greater accuracy and perceptual quality. Experimental results show that our method is accurate and robust in the longitudinal prediction of infant brain diffusion MRI data.
Individualised prediction of longitudinal change in multimodal brain imaging.
Gong W, Beckmann C, Smith S Imaging Neurosci (Camb). 2025; 2:1-19.
PMID: 40046980 PMC: 11877422. DOI: 10.1162/imag_a_00215.
Acceleration of High-Resolution 3D MR Fingerprinting via a Graph Convolutional Network.
Cheng F, Chen Y, Zong X, Lin W, Shen D, Yap P Med Image Comput Comput Assist Interv. 2024; 12262:158-166.
PMID: 38504822 PMC: 10950303. DOI: 10.1007/978-3-030-59713-9_16.
Deep learning prediction of diffusion MRI data with microstructure-sensitive loss functions.
Chen G, Hong Y, Huynh K, Yap P Med Image Anal. 2023; 85:102742.
PMID: 36682154 PMC: 9974781. DOI: 10.1016/j.media.2023.102742.
Health Information Prediction System of Infant Sports Based on Deep Learning Network.
Qi J, Zhang J Biomed Res Int. 2022; 2022:4438251.
PMID: 35958812 PMC: 9357799. DOI: 10.1155/2022/4438251.
Lang Y, Deng H, Xiao D, Lian C, Kuang T, Gateno J Med Image Comput Comput Assist Interv. 2021; 12904:478-487.
PMID: 34927177 PMC: 8675275. DOI: 10.1007/978-3-030-87202-1_46.