» Articles » PMID: 30990424

Longitudinal Prediction of Infant Diffusion MRI Data Via Graph Convolutional Adversarial Networks

Overview
Date 2019 Apr 17
PMID 30990424
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Missing data is a common problem in longitudinal studies due to subject dropouts and failed scans. We present a graph-based convolutional neural network to predict missing diffusion MRI data. In particular, we consider the relationships between sampling points in the spatial domain and the diffusion wave-vector domain to construct a graph. We then use a graph convolutional network to learn the non-linear mapping from available data to missing data. Our method harnesses a multi-scale residual architecture with adversarial learning for prediction with greater accuracy and perceptual quality. Experimental results show that our method is accurate and robust in the longitudinal prediction of infant brain diffusion MRI data.

Citing Articles

Individualised prediction of longitudinal change in multimodal brain imaging.

Gong W, Beckmann C, Smith S Imaging Neurosci (Camb). 2025; 2:1-19.

PMID: 40046980 PMC: 11877422. DOI: 10.1162/imag_a_00215.


Acceleration of High-Resolution 3D MR Fingerprinting via a Graph Convolutional Network.

Cheng F, Chen Y, Zong X, Lin W, Shen D, Yap P Med Image Comput Comput Assist Interv. 2024; 12262:158-166.

PMID: 38504822 PMC: 10950303. DOI: 10.1007/978-3-030-59713-9_16.


Deep learning prediction of diffusion MRI data with microstructure-sensitive loss functions.

Chen G, Hong Y, Huynh K, Yap P Med Image Anal. 2023; 85:102742.

PMID: 36682154 PMC: 9974781. DOI: 10.1016/j.media.2023.102742.


Health Information Prediction System of Infant Sports Based on Deep Learning Network.

Qi J, Zhang J Biomed Res Int. 2022; 2022:4438251.

PMID: 35958812 PMC: 9357799. DOI: 10.1155/2022/4438251.


DLLNet: An Attention-Based Deep Learning Method for Dental Landmark Localization on High-Resolution 3D Digital Dental Models.

Lang Y, Deng H, Xiao D, Lian C, Kuang T, Gateno J Med Image Comput Comput Assist Interv. 2021; 12904:478-487.

PMID: 34927177 PMC: 8675275. DOI: 10.1007/978-3-030-87202-1_46.


References
1.
Meng Y, Li G, Rekik I, Zhang H, Gao Y, Lin W . Can we predict subject-specific dynamic cortical thickness maps during infancy from birth?. Hum Brain Mapp. 2017; 38(6):2865-2874. PMC: 5426957. DOI: 10.1002/hbm.23555. View

2.
Wolterink J, Leiner T, Viergever M, Isgum I . Generative Adversarial Networks for Noise Reduction in Low-Dose CT. IEEE Trans Med Imaging. 2017; 36(12):2536-2545. DOI: 10.1109/TMI.2017.2708987. View

3.
Nie D, Wang L, Adeli E, Lao C, Lin W, Shen D . 3-D Fully Convolutional Networks for Multimodal Isointense Infant Brain Image Segmentation. IEEE Trans Cybern. 2018; 49(3):1123-1136. PMC: 6230311. DOI: 10.1109/TCYB.2018.2797905. View

4.
Kim J, Chen G, Lin W, Yap P, Shen D . Graph-Constrained Sparse Construction of Longitudinal Diffusion-Weighted Infant Atlases. Med Image Comput Comput Assist Interv. 2018; 10433:49-56. PMC: 5858903. DOI: 10.1007/978-3-319-66182-7_6. View

5.
Fan J, Cao X, Yap P, Shen D . BIRNet: Brain image registration using dual-supervised fully convolutional networks. Med Image Anal. 2019; 54:193-206. PMC: 6764428. DOI: 10.1016/j.media.2019.03.006. View