» Articles » PMID: 30979910

The Serial Blocking Effect: a Testbed for the Neural Mechanisms of Temporal-difference Learning

Overview
Journal Sci Rep
Specialty Science
Date 2019 Apr 14
PMID 30979910
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Temporal-difference (TD) learning models afford the neuroscientist a theory-driven roadmap in the quest for the neural mechanisms of reinforcement learning. The application of these models to understanding the role of phasic midbrain dopaminergic responses in reward prediction learning constitutes one of the greatest success stories in behavioural and cognitive neuroscience. Critically, the classic learning paradigms associated with TD are poorly suited to cast light on its neural implementation, thus hampering progress. Here, we present a serial blocking paradigm in rodents that overcomes these limitations and allows for the simultaneous investigation of two cardinal TD tenets; namely, that learning depends on the computation of a prediction error, and that reinforcing value, whether intrinsic or acquired, propagates back to the onset of the earliest reliable predictor. The implications of this paradigm for the neural exploration of TD mechanisms are highlighted.

Citing Articles

Understanding Associative Learning Through Higher-Order Conditioning.

Gostolupce D, Lay B, Maes E, Iordanova M Front Behav Neurosci. 2022; 16:845616.

PMID: 35517574 PMC: 9062293. DOI: 10.3389/fnbeh.2022.845616.


Neural substrates of appetitive and aversive prediction error.

Iordanova M, Yau J, McDannald M, Corbit L Neurosci Biobehav Rev. 2021; 123:337-351.

PMID: 33453307 PMC: 7933120. DOI: 10.1016/j.neubiorev.2020.10.029.


Reward foraging task and model-based analysis reveal how fruit flies learn value of available options.

Seidenbecher S, Sanders J, von Philipsborn A, Kvitsiani D PLoS One. 2020; 15(10):e0239616.

PMID: 33007023 PMC: 7531776. DOI: 10.1371/journal.pone.0239616.


Different methods of fear reduction are supported by distinct cortical substrates.

Lay B, Pitaru A, Boulianne N, Esber G, Iordanova M Elife. 2020; 9.

PMID: 32589138 PMC: 7343386. DOI: 10.7554/eLife.55294.


Causal evidence supporting the proposal that dopamine transients function as temporal difference prediction errors.

Maes E, Sharpe M, Usypchuk A, Lozzi M, Chang C, Gardner M Nat Neurosci. 2020; 23(2):176-178.

PMID: 31959935 PMC: 7007380. DOI: 10.1038/s41593-019-0574-1.

References
1.
Lauzon N, Bishop S, Laviolette S . Dopamine D1 versus D4 receptors differentially modulate the encoding of salient versus nonsalient emotional information in the medial prefrontal cortex. J Neurosci. 2009; 29(15):4836-45. PMC: 6665325. DOI: 10.1523/JNEUROSCI.0178-09.2009. View

2.
Sharpe M, Chang C, Liu M, Batchelor H, Mueller L, Jones J . Dopamine transients are sufficient and necessary for acquisition of model-based associations. Nat Neurosci. 2017; 20(5):735-742. PMC: 5413864. DOI: 10.1038/nn.4538. View

3.
Rasmussen K, Strecker R, Jacobs B . Single unit response of noradrenergic, serotonergic and dopaminergic neurons in freely moving cats to simple sensory stimuli. Brain Res. 1986; 369(1-2):336-40. DOI: 10.1016/0006-8993(86)90546-9. View

4.
Iordanova M, Westbrook R, Killcross A . Dopamine activity in the nucleus accumbens modulates blocking in fear conditioning. Eur J Neurosci. 2006; 24(11):3265-70. DOI: 10.1111/j.1460-9568.2006.05195.x. View

5.
Jennings D, Kirkpatrick K . Interval duration effects on blocking in appetitive conditioning. Behav Processes. 2005; 71(2-3):318-29. DOI: 10.1016/j.beproc.2005.11.007. View