» Articles » PMID: 30967552

Gene Correction for SCID-X1 in Long-term Hematopoietic Stem Cells

Abstract

Gene correction in human long-term hematopoietic stem cells (LT-HSCs) could be an effective therapy for monogenic diseases of the blood and immune system. Here we describe an approach for X-linked sSevere cCombined iImmunodeficiency (SCID-X1) using targeted integration of a cDNA into the endogenous start codon to functionally correct disease-causing mutations throughout the gene. Using a CRISPR-Cas9/AAV6 based strategy, we achieve up to 20% targeted integration frequencies in LT-HSCs. As measures of the lack of toxicity we observe no evidence of abnormal hematopoiesis following transplantation and no evidence of off-target mutations using a high-fidelity Cas9 as a ribonucleoprotein complex. We achieve high levels of targeting frequencies (median 45%) in CD34 HSPCs from six SCID-X1 patients and demonstrate rescue of lymphopoietic defect in a patient derived HSPC population in vitro and in vivo. In sum, our study provides specificity, toxicity and efficacy data supportive of clinical development of genome editing to treat SCID-Xl.

Citing Articles

Applications of Gene Editing and Nanotechnology in Stem Cell-Based Therapies for Human Diseases.

Bolideei M, Barzigar R, Gahrouei R, Mohebbi E, Haider K, Paul S Stem Cell Rev Rep. 2025; .

PMID: 40014250 DOI: 10.1007/s12015-025-10857-0.


Allogeneic CD33-directed CAR-NKT cells for the treatment of bone marrow-resident myeloid malignancies.

Li Y, Fang Y, Niu S, Zhu Y, Chen Y, Lyu Z Nat Commun. 2025; 16(1):1248.

PMID: 39893165 PMC: 11787387. DOI: 10.1038/s41467-025-56270-6.


Therapeutic gene correction of HBB frameshift CD41-42 (-TCTT) deletion in human hematopoietic stem cells.

Liu Q, Li X, Xu H, Luo Y, Cheng L, Liang J Adv Biotechnol (Singap). 2025; 3(1):2.

PMID: 39883359 PMC: 11740860. DOI: 10.1007/s44307-024-00053-5.


Generating allogeneic CAR-NKT cells for off-the-shelf cancer immunotherapy with genetically engineered HSP cells and feeder-free differentiation culture.

Li Y, Zhou K, Lee D, Zhu Y, Halladay T, Yu J Nat Protoc. 2025; .

PMID: 39825143 DOI: 10.1038/s41596-024-01077-w.


Expansion and Precise CRISPR-Cas9 Gene Repair of Autologous T-Memory Stem Cells from Patients with T-Cell Immunodeficiencies.

Li X, Chu V, Kocks C, Rajewsky K Bio Protoc. 2024; 14(20):e5085.

PMID: 39512884 PMC: 11540044. DOI: 10.21769/BioProtoc.5085.


References
1.
Pai S, Logan B, Griffith L, Buckley R, Parrott R, Dvorak C . Transplantation outcomes for severe combined immunodeficiency, 2000-2009. N Engl J Med. 2014; 371(5):434-46. PMC: 4183064. DOI: 10.1056/NEJMoa1401177. View

2.
Stephan V, Wahn V, Le Deist F, Dirksen U, Broker B, Horneff G . Atypical X-linked severe combined immunodeficiency due to possible spontaneous reversion of the genetic defect in T cells. N Engl J Med. 1996; 335(21):1563-7. DOI: 10.1056/NEJM199611213352104. View

3.
Hacein-Bey-Abina S, von Kalle C, Schmidt M, McCormack M, Wulffraat N, Leboulch P . LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003; 302(5644):415-9. DOI: 10.1126/science.1088547. View

4.
Woods N, Bottero V, Schmidt M, von Kalle C, Verma I . Gene therapy: therapeutic gene causing lymphoma. Nature. 2006; 440(7088):1123. DOI: 10.1038/4401123a. View

5.
Hacein-Bey-Abina S, Garrigue A, Wang G, Soulier J, Lim A, Morillon E . Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest. 2008; 118(9):3132-42. PMC: 2496963. DOI: 10.1172/JCI35700. View