Designing High-Refractive Index Polymers Using Materials Informatics
Overview
Affiliations
A machine learning strategy is presented for the rapid discovery of new polymeric materials satisfying multiple desirable properties. Of particular interest is the design of high refractive index polymers. Our in silico approach employs a series of quantitative structure⁻property relationship models that facilitate rapid virtual screening of polymers based on relevant properties such as the refractive index, glass transition and thermal decomposition temperatures, and solubility in standard solvents. Exploration of the chemical space is carried out using an evolutionary algorithm that assembles synthetically tractable monomers from a database of existing fragments. Selected monomer structures that were further evaluated using density functional theory calculations agree well with model predictions.
Materials informatics for developing new restorative dental materials: a narrative review.
Yamaguchi S, Li H, Imazato S Front Dent Med. 2025; 4:1123976.
PMID: 39916905 PMC: 11797831. DOI: 10.3389/fdmed.2023.1123976.
Plasmonic Characterization of 3D Printable Metal-Polymer Nanocomposites.
de la Mata M, Sanz de Leon A, Valencia-Linan L, Molina S ACS Mater Au. 2024; 4(4):424-435.
PMID: 39006399 PMC: 11240405. DOI: 10.1021/acsmaterialsau.4c00007.
Ishiyama Y, Nagai R, Mieda S, Takei Y, Minato Y, Natsume Y Sci Rep. 2022; 12(1):19003.
PMID: 36347908 PMC: 9643424. DOI: 10.1038/s41598-022-22940-4.
Mairpady A, Mourad A, Mozumder M Polymers (Basel). 2022; 14(9).
PMID: 35566970 PMC: 9104973. DOI: 10.3390/polym14091802.
Predictions of High-Order Electric Properties of Molecules: Can We Benefit from Machine Learning?.
Tuan-Anh T, Zalesny R ACS Omega. 2020; 5(10):5318-5325.
PMID: 32201820 PMC: 7081434. DOI: 10.1021/acsomega.9b04339.