» Articles » PMID: 30965851

Atomistic Molecular Dynamics Simulations of the Initial Crystallization Stage in an SWCNT-Polyetherimide Nanocomposite

Overview
Publisher MDPI
Date 2019 Apr 11
PMID 30965851
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Crystallization of all-aromatic heterocyclic polymers typically results in an improvement of their thermo-mechanical properties. Nucleation agents may be used to promote crystallization, and it is well known that the incorporation of nanoparticles, and in particular carbon-based nanofillers, may induce or accelerate crystallization through nucleation. The present study addresses the structural properties of polyetherimide-based nanocomposites and the initial stages of polyetherimide crystallization as a result of single-walled carbon nanotube (SWCNT) incorporation. We selected two amorphous thermoplastic polyetherimides ODPA-P3 and aBPDA-P3 based on 3,3',4,4'-oxydiphthalic dianhydride (ODPA), 2,3',3,4'-biphenyltetracarboxylic dianhydride (aBPDA) and diamine 1,4-[4-(4-aminophenoxy)phenoxy]benzene (P3) and simulated the onset of crystallization in the presence of SWCNTs using atomistic molecular dynamics. For ODPA-P3, we found that the planar phthalimide and phenylene moieties show pronounced ordering near the CNT (carbon nanotube) surface, which can be regarded as the initial stage of crystallization. We will discuss two possible mechanisms for ODPA-P3 crystallization in the presence of SWCNTs: the spatial confinement caused by the CNTs and π⁻π interactions at the CNT-polymer matrix interface. Based on our simulation results, we propose that ODPA-P3 crystallization is most likely initiated by favorable π⁻π interactions between the carbon nanofiller surface and the planar ODPA-P3 phthalimide and phenylene moieties.

Citing Articles

: A Python Package for Polymer Chain Orientation and Microstructure Evolution Monitoring.

Barrett T, Minus M J Chem Theory Comput. 2024; 21(1):491-498.

PMID: 39714625 PMC: 11736789. DOI: 10.1021/acs.jctc.4c01216.


The Effect of Mechanical Elongation on the Thermal Conductivity of Amorphous and Semicrystalline Thermoplastic Polyimides: Atomistic Simulations.

Nazarychev V, Lyulin S Polymers (Basel). 2023; 15(13).

PMID: 37447571 PMC: 10346438. DOI: 10.3390/polym15132926.


The Transport Properties of Semi-Crystalline Polyetherimide BPDA-P3 in Amorphous and Ordered States: Computer Simulations.

Dobrovskiy A, Nazarychev V, Volgin I, Lyulin S Membranes (Basel). 2022; 12(9).

PMID: 36135875 PMC: 9504751. DOI: 10.3390/membranes12090856.


Rheological and Mechanical Properties of Thermoplastic Crystallizable Polyimide-Based Nanocomposites Filled with Carbon Nanotubes: Computer Simulations and Experiments.

Nazarychev V, Vaganov G, Larin S, Didenko A, Elokhovskiy V, Svetlichnyi V Polymers (Basel). 2022; 14(15).

PMID: 35956666 PMC: 9370852. DOI: 10.3390/polym14153154.


Toward realistic computer modeling of paraffin-based composite materials: critical assessment of atomic-scale models of paraffins.

Glova A, Volgin I, Nazarychev V, Larin S, Lyulin S, Gurtovenko A RSC Adv. 2022; 9(66):38834-38847.

PMID: 35540183 PMC: 9076000. DOI: 10.1039/c9ra07325f.


References
1.
Chen R, Zhang Y, Wang D, Dai H . Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc. 2001; 123(16):3838-9. DOI: 10.1021/ja010172b. View

2.
Chen J, Liu H, Weimer W, Halls M, Waldeck D, Walker G . Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers. J Am Chem Soc. 2002; 124(31):9034-5. DOI: 10.1021/ja026104m. View

3.
Oostenbrink C, Villa A, Mark A, van Gunsteren W . A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem. 2004; 25(13):1656-76. DOI: 10.1002/jcc.20090. View

4.
Oostenbrink C, Soares T, van der Vegt N, van Gunsteren W . Validation of the 53A6 GROMOS force field. Eur Biophys J. 2005; 34(4):273-84. DOI: 10.1007/s00249-004-0448-6. View

5.
van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark A, Berendsen H . GROMACS: fast, flexible, and free. J Comput Chem. 2005; 26(16):1701-18. DOI: 10.1002/jcc.20291. View