» Articles » PMID: 30963107

Modeling Parkinson's Disease in Midbrain-like Organoids

Abstract

Modeling Parkinson's disease (PD) using advanced experimental in vitro models is a powerful tool to study disease mechanisms and to elucidate unexplored aspects of this neurodegenerative disorder. Here, we demonstrate that three-dimensional (3D) differentiation of expandable midbrain floor plate neural progenitor cells (mfNPCs) leads to organoids that resemble key features of the human midbrain. These organoids are composed of midbrain dopaminergic neurons (mDANs), which produce and secrete dopamine. Midbrain-specific organoids derived from PD patients carrying the G2019S mutation recapitulate disease-relevant phenotypes. Automated high-content image analysis shows a decrease in the number and complexity of mDANs in G2019S compared to control organoids. The floor plate marker FOXA2, required for mDAN generation, increases in PD patient-derived midbrain organoids, suggesting a neurodevelopmental defect in mDANs expressing G2019S. Thus, we provide a robust method to reproducibly generate 3D human midbrain organoids containing mDANs to investigate PD-relevant patho-mechanisms.

Citing Articles

Novel co-culture model of T cells and midbrain organoids for investigating neurodegeneration in Parkinson's disease.

Gerasimova E, Beenen A, Kachkin D, Regensburger M, Zundler S, Blumenthal D NPJ Parkinsons Dis. 2025; 11(1):36.

PMID: 40021643 PMC: 11871142. DOI: 10.1038/s41531-025-00882-8.


A Comprehensive Review on Utilizing Human Brain Organoids to Study Neuroinflammation in Neurological Disorders.

Rubio A, Hamilton L, Bausch M, Jin M, Papetti A, Jiang P J Neuroimmune Pharmacol. 2025; 20(1):23.

PMID: 39987404 PMC: 11846768. DOI: 10.1007/s11481-025-10181-x.


Prasinezumab slows motor progression in Parkinsons disease: beyond the clinical data.

Xiao B, Tan E NPJ Parkinsons Dis. 2025; 11(1):31.

PMID: 39971932 PMC: 11839931. DOI: 10.1038/s41531-025-00886-4.


Cystatin C Secretion in Blood Derivatives and Cellular Models of Idiopathic Parkinson's Disease.

Mommaerts K, Monzel A, Zagare A, Nickels S, Diederich N, Longhino L Parkinsons Dis. 2025; 2025:5149071.

PMID: 39958955 PMC: 11824396. DOI: 10.1155/padi/5149071.


Two- and Three-Dimensional In Vitro Models of Parkinson's and Alzheimer's Diseases: State-of-the-Art and Applications.

Solana-Manrique C, Sanchez-Perez A, Paricio N, Munoz-Descalzo S Int J Mol Sci. 2025; 26(2).

PMID: 39859333 PMC: 11766061. DOI: 10.3390/ijms26020620.


References
1.
Hargus G, Cooper O, Deleidi M, Levy A, Lee K, Marlow E . Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc Natl Acad Sci U S A. 2010; 107(36):15921-6. PMC: 2936617. DOI: 10.1073/pnas.1010209107. View

2.
Kriks S, Shim J, Piao J, Ganat Y, Wakeman D, Xie Z . Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature. 2011; 480(7378):547-51. PMC: 3245796. DOI: 10.1038/nature10648. View

3.
Kirkeby A, Grealish S, Wolf D, Nelander J, Wood J, Lundblad M . Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Rep. 2012; 1(6):703-14. DOI: 10.1016/j.celrep.2012.04.009. View

4.
Reinhardt P, Schmid B, Burbulla L, Schondorf D, Wagner L, Glatza M . Genetic correction of a LRRK2 mutation in human iPSCs links parkinsonian neurodegeneration to ERK-dependent changes in gene expression. Cell Stem Cell. 2013; 12(3):354-67. DOI: 10.1016/j.stem.2013.01.008. View

5.
Reinhardt P, Glatza M, Hemmer K, Tsytsyura Y, Thiel C, Hoing S . Derivation and expansion using only small molecules of human neural progenitors for neurodegenerative disease modeling. PLoS One. 2013; 8(3):e59252. PMC: 3606479. DOI: 10.1371/journal.pone.0059252. View