» Articles » PMID: 30962396

Basic LEUCINE ZIPPER TRANSCRIPTION FACTOR67 Transactivates to Establish Primary Seed Dormancy in Arabidopsis

Overview
Journal Plant Cell
Specialties Biology
Cell Biology
Date 2019 Apr 10
PMID 30962396
Citations 27
Authors
Affiliations
Soon will be listed here.
Abstract

Seed dormancy governs the timing of germination, one of the most important developmental transitions in a plant's life cycle. The () gene is a key regulator of seed dormancy and a major quantitative trait locus in Arabidopsis (). expression is under tight developmental and environmental regulation, but the transcription factors involved are not known. Here we show that basic LEUCINE ZIPPER TRANSCRIPTION FACTOR67 (bZIP67) acts downstream of the central regulator of seed development, LEAFY COTYLEDON1, to transactivate during maturation and help to establish primary dormancy. We show that overexpression enhances dormancy and that bZIP67 protein (but not transcript) abundance is increased in seeds matured in cool conditions, providing a mechanism to explain how temperature regulates expression. We also show that natural allelic variation in the promoter affects bZIP67-dependent transactivation, providing a mechanism to explain ecotypic differences in seed dormancy that are controlled by the locus.

Citing Articles

The PEBP genes FLOWERING LOCUS T and TERMINAL FLOWER 1 modulate seed dormancy and size.

Nadal Bigas J, Fiers M, van der Wal F, Willems L, Willemsen V, Nijveen H J Exp Bot. 2025; 76(4):1049-1067.

PMID: 39827301 PMC: 11850975. DOI: 10.1093/jxb/erae466.


The transcription factor CCT30 promotes rice preharvest sprouting by regulating sugar signalling to inhibit the ABA-mediated pathway.

Fan X, Gao F, Liu Y, Huang W, Yang Y, Luo Z Plant Biotechnol J. 2024; 23(2):579-591.

PMID: 39622700 PMC: 11772322. DOI: 10.1111/pbi.14521.


Voice from both sides: a molecular dialogue between transcriptional activators and repressors in seed-to-seedling transition and crop adaptation.

Go D, Lu B, Alizadeh M, Gazzarrini S, Song L Front Plant Sci. 2024; 15:1416216.

PMID: 39166233 PMC: 11333834. DOI: 10.3389/fpls.2024.1416216.


Genetic, Epigenetic, and Environmental Control of Seed Dormancy and Germination.

Otani M, Zheng L, Kawakami N Methods Mol Biol. 2024; 2830:3-12.

PMID: 38977563 DOI: 10.1007/978-1-0716-3965-8_1.


Identification of Genes and Elucidation of the Regulatory Effects of PsARF16a on the Dormancy of Tree Peony Plantlets.

Fu Z, Yuan X, Zhao Y, Wang X, Lu L, Wang H Genes (Basel). 2024; 15(6).

PMID: 38927602 PMC: 11203063. DOI: 10.3390/genes15060666.


References
1.
Yamamoto A, Kagaya Y, Toyoshima R, Kagaya M, Takeda S, Hattori T . Arabidopsis NF-YB subunits LEC1 and LEC1-LIKE activate transcription by interacting with seed-specific ABRE-binding factors. Plant J. 2009; 58(5):843-56. DOI: 10.1111/j.1365-313X.2009.03817.x. View

2.
Braybrook S, Stone S, Park S, Bui A, Le B, Fischer R . Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis. Proc Natl Acad Sci U S A. 2006; 103(9):3468-73. PMC: 1413938. DOI: 10.1073/pnas.0511331103. View

3.
Wessel D, Flugge U . A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem. 1984; 138(1):141-3. DOI: 10.1016/0003-2697(84)90782-6. View

4.
Keurentjes J, Fu J, Terpstra I, Garcia J, Van den Ackerveken G, Snoek L . Regulatory network construction in Arabidopsis by using genome-wide gene expression quantitative trait loci. Proc Natl Acad Sci U S A. 2007; 104(5):1708-13. PMC: 1785256. DOI: 10.1073/pnas.0610429104. View

5.
Vicente-Carbajosa J, Carbonero P . Seed maturation: developing an intrusive phase to accomplish a quiescent state. Int J Dev Biol. 2005; 49(5-6):645-51. DOI: 10.1387/ijdb.052046jc. View